ISSN 0851 - 1217

ROYAUME DU MAROC

BULLETIN OFFICIEL

EDITION DE TRADUCTION OFFICIELLE

	T	ARIFS	D'ABONNEMENT	ABONNEMENT	
EDITIONS	AU M 6 mois	AROC 1 an	A L'ETRANGER	IMPRIMERIE OFFICIELLE RABAT - CHELLAH Tél.: 05.37.76.50.24 - 05.37.76.50.25	
Edition générale	 250 DH	400 DH 200 DH 200 DH 300 DH 300 DH 200 DH	par voies ordinaire, aérienne ou de la poste rapide interna- tionale, les tarifs prévus ci- contre sont majorés des frais d'envoi, tels qu'ils sont fixés par la réglementation postale	05.37.76.54.13 Compte nº: 310 810 1014029004423101 33 ouvert à la Trésorerie Préfectorale de Rabat	

L'édition de traduction officielle contient la traduction officielle des lois et règlements ainsi que le texte en langue étrangère des accords internationaux lorsqu'aux termes de ces accords, ledit texte fait foi, soit seul, soit concurremment avec le texte arabe

SOMMAIRE

TEXTES GENERAUX

Pages

Approbation du règlement parasismique pour les constructions en terre et institution du Comité national des constructions en terre.

Règlement de construction parasismique (R.P.S 2000).

Décret n° 2-12-682 du 17 rejeb 1434 (28 mai 2013)
modifiant le décret n° 2-02-177 du 9 hija 1422
(22 février 2002) approuvant le règlement de
construction parasismique (R.P.S 2000) applicable
aux bâtiments, fixant les règles parasismiques et
instituant le Comité national du génie parasismique. 2582

Intensification de la production animale. – Encouragements de l'Etat.

Arrêté du ministre de l'agriculture et de la pêche maritime n° 2518-13 du 4 chaoual 1434 (12 août 2013) modifiant et complétant l'arrêté du ministre de l'agriculture et de la réforme agraire n° 1536-87 du 13 journada I 1408 (4 janvier 1988) pris pour l'application des dispositions des articles 3, 6 et 7 du décret n° 2-86-551 du 20 moharrem 1408 (15 septembre 1987) réglementant les encouragements de l'Etat en vue de l'intensification de la production animale......

Douane. – Soumission des importations de tôles d'acier laminées à chaud à un droit antidumping provisoire.

Pages

2694

Arrêté du ministre de l'enseigneme recherche scientifique et de la fa n° 2122-13 du 25 chaabane 14 complétant l'arrêté n° 2963-97 (3 décembre 1997) fixant la reconnus équivalents au dip en médecine	ormation des cadres 134 (4 juillet 2013) du 2 chaabane 1418 liste des diplômes plôme de docteur 2699
recherche scientifique et de la fa n° 2125-13 du 25 chaabane 14 complétant l'arrêté n° 2963-97 ((3 décembre 1997) fixant la reconnus équivalents au dip	ormation des cadres 134 (4 juillet 2013) du 2 chaabane 1418 liste des diplômes plôme de docteur
Arrêté du ministre de l'enseigneme recherche scientifique et de la l n° 2126-13 du 25 chaabane 1- complétant l'arrêté n° 2963-97 (3 décembre 1997) fixant la	ent supérieur, de la Formation des cadres 134 (4 juillet 2013) du 2 chaabane 1418 liste des diplômes
en médecine	ent supérieur, de la formation des cadres 434 (4 juillet 2013) du 2 chaabane 1418
reconnus équivalents au di en médecine	plôme de docteur 2700 e des parts d'intérêt. s mines, de l'eau et
(2 juillet 2013) instituant la ces d'intérêt détenues par la sociéte Morocco s.a.r.l. » dans les p d'hydrocarbures dits « ESSAO à VII » au profit de la sociét	ssion totale des parts « Canamens Energy permis de recherche UIRA OFFSHORE I té « Kosmos Energy
26	(3 décembre 1997) fixant la reconnus équivalents au dip en médecine

TEXTES GENERAUX

Décret n° 2-12-666 du 17 rejeb 1434 (28 mai 2013) approuvant le règlement parasismique pour les constructions en terre et instituant le Comité national des constructions en terre.

LE CHEF DU GOUVERNEMENT.

Vu la loi nº 12-90 relative à l'urbanisme, promulguée par le dahir n°1-92-31 du 15 hija 1412 (17 juin 1992) notamment ses articles 59 et 60 ;

Vu le décret n° 2-92-832 du 27 rabii II 1414 (14 octobre 1993) pris pour l'application de la loi n°12-90 relative à l'urbanisme, notamment son article 39 ;

Sur proposition du ministre de l'habitat, de l'urbanisme et de la politique de la ville ;

Après avis du ministre de l'intérieur et du ministre de l'équipement et du transport ;

Après délibération en conseil du gouvernement, réuni le 12 rejeb 1434 (23 mai 2013),

DÉCRÈTE :

TITRE PREMIER

DU REGLEMENT PARASISMIQUE DES CONSTRUCTIONS EN TERRE

ARTICLE PREMIER. - Est approuvé tel qu'il est annexé au présent décret le règlement parasismique pour les constructions en terre.

Ce règlement est divisé en deux sections :

Section première. - Le règlement parasismique pour l'autoconstruction en terre, dénommé «RPACTerre 2011»

Section 2. – Le règlement parasismique des constructions en Terre fixant les règles parasismiques auxquelles doivent satisfaire les constructions aux fins de garantir la sécurité, dénommé «RPCTerre 2011»

Ces deux règlements sont applicables aux bâtiments conçus selon les techniques locales traditionnelles et dont la structure porteuse utilise essentiellement la terre, la paille, le bois, le palmier, les roscaux ou des matériaux similaires.

Les matériaux couverts par ces règlements sont l'adobe, l'adobe stabilisé, le bloc de terre comprimé, le pisé, le torchis, la bauge et le mortier de terre.

ART. 2. – Pour l'application du règlement objet du présent décret, le territoire du Royaume est réparti en cinq zones de sismicités. Les zones d'accélérations sismiques maximales sont présentées sur la carte contenue dans ce règlement.

ART. 3. – Le règlement parasismique pour l'auto-construction en terre «RPACTerre 2011» s'applique aux bâtiments d'habitation construits sans l'obligation de recours à un architecte ou à un ingénieur spécialisé, prévu par les articles 50 et 51 de la loi n°12-90 relative à l'urbanisme, promulguée par le dahir n°1-92-31 du 15 hija 1412 (17 juin 1992).

Les bâtiments d'habitation en terre seront limités en hauteur à un seul niveau dans les deux zones d'accélérations sismiques maximales 4 et 3, ou dans la zone à haut risque sismique.

Les bâtiments d'habitation en terre seront limités en hauteur à deux niveaux dans les zones d'accélérations sismiques maximales 2, 1 et 0.

Il est interdit de construire des bâtiments en terre sur des sols mous, expansifs, marécageux, inondables, à risque de glissement, en présence de nappe phréatique superficielle, ou à moins de deux km de distance de failles géologiques actives connues.

ART. 4. – Le règlement parasismique des constructions en Terre « RPCTerre 2011 » s'applique aux constructions en terre soumises à l'obligation de recours à un architecte ou à un ingénieur spécialisé, prévue par les articles 50 et 51 de la loi n° 12-90 précitée.

Les éléments porteurs principaux sont des murs en adobe, pisé, bauge ou moellons de pierres à mortier de terre. Le matériau terre peut être stabilisé ou non.

Les constructions sont limitées à un niveau dans les deux zones d'accélérations sismiques maximales 4 et 3 et à deux niveaux dans les zones d'accélérations sismiques maximales 2, 1 et 0.

Les constructions en terre d'importance vitale de type ; hôpitaux, cliniques, établissements de protection civile, postes de police, bâtiments administratifs de centres de décision en cas de séisme, sont limitées à un seul niveau dans toutes les zones.

Les constructions en terre destinées au grand public de type : écoles, universités, bibliothèques, musées, grands lieux de culte, centres commerciaux, etc., sont limitées à un seul niveau en zones d'accélérations maximales 4 et 3.

La hauteur maximale des murs porteurs en terre est inférieure ou égale à 4 mètres pour les constructions à un seul niveau et à 6,5 mètres pour les constructions à deux niveaux.

TITRE II

DU COMITÉ NATIONAL DES CONSTRUCTIONS EN TERRE

ART. 5. – Il est créé un comité dit « Comité national des constructions en terre » chargé de donner son avis sur les propositions d'amélioration à apporter aux règlements objet du présent décret et à tout nouveau règlement dans le domaine de sécurité dans les constructions en terre.

ART. 6. – Le Comité national des constructions en terre est composé, sous la présidence de l'autorité gouvernementale chargée de l'habitat, des représentants des autorités gouvernementales ci-après :

- l'autorité gouvernementale chargée de l'urbanisme ;
- l'autorité gouvernementale chargée de l'intérieur ;
- l'autorité gouvernementale chargée de l'équipement ;
- l'autorité gouvernementale chargée des mines ;
- -l'autorité gouvernementale chargée de la recherche scientifique;
- les représentants des départements universitaires, des instituts scientifiques et techniques, des écoles supérieures de formation et des organisations professionnelles concernées dont la liste est fixée par arrêté de l'autorité gouvernementale chargée de l'habitat.

Le secrétariat du comité national des constructions en terre est assuré par l'autorité gouvernementale chargée de l'habitat.

TITRE III

DISPOSITIONS DIVERSES

ART. 7. – Le deuxième alinéa de l'article 3 du décret n° 2-02-177 du 9 hija 1422 (22 février 2002) approuvant le règlement de construction parasismique (R.P.S 2000) applicable aux bâtiments, fixant les règles parasismiques et instituant le Comité national du génie parasismique, est modifié comme suit :

« Article 3 (2^{ème} alinéa). – Toutefois ne sont pas soumis à « ce règlement les bâtiments conçus selon les techniques locales « traditionnelles et dont la structure portante utilise essentiellement « la terre, la paille, le bois, le palmier, les roseaux ou des « matériaux similaires. »

ART. 8. – Le ministre de l'intérieur, le ministre de l'habitat, de l'urbanisme et de la politique de la ville et le ministre de l'équipement et du transport sont chargés, chacun en ce qui le concerne, de l'exécution du présent décret qui entrera en vigueur six (6) mois après sa publication au Bulletin officiel.

Fait à Rabat, le 17 rejeb 1434 (28 mai 2013).

ABDEL-ILAH BENKIRAN.

Pour contreseing:

Le ministre de l'intérieur, MOHAND LAENSER.

Le ministre de l'habitat, de l'urbanisme et de la politique de la ville, MOHAMMED NABIL BENABDALLAH.

Le ministre de l'équipement et du transport, AZIZ RABBAH.

REGLEMENT PARASISMIQUE DES CONSTRUCTIONS EN TERRE RPCT 2011

I. AVANT PROPOS

La construction en terre a hérité d'une tradition vernaculaire, des techniques et des solutions judicieuses qui ont évolué avec l'esprit et l'objectif, de mieux valoriser les propriétés des matériaux locaux et plus particulièrement le matériau terre de construction. Elle représente un patrimoine socioculturel de plusieurs générations, et le témoin authentique de notre tradition architecturale et culturelle.

Il est donc nécessaire de valoriser d'une manière rationnelle les performances de la construction en terre pour qu'elle demeure entre autres, la solution économique et écologique retenue de l'habitat en milieu rural.

Ce projet s'inscrit donc dans la perspective de doter notre patrimoine de constructions en terre de normes et de guides techniques pour promouvoir ce secteur de construction en milieu rural et même en milieu urbain au même titre que les constructions en matériaux conventionnels.

Ce règlement est divisé en deux sections :

 Section N° 1: Règlement Parasismique d'Auto – Construction en Terre, RPACT 2011

Ce document est le règlement parasismique des constructions en terre qui sont réalisées sans faire appel aux études architecturales et techniques. Ce règlement est un recueil de prescription de règles de bonne pratique et de savoir faire en matière de protection sismique des constructions en terre.

• Section N° 2 : Règlement Parasismiques des Constructions en Terre RPCT 2011 Ce règlement est destiné aux architectes, ingénieurs et techniciens chargés de la conception et le dimensionnement des constructions en terre. Il concerne les performances requises des structures de contreventement des constructions en terre visà-vis des séismes réglementaires.

NB: « Il est à noter que le texte en caractère italique est volontairement inclus pour fournir des commentaires, des illustrations, des explications et des informations complémentaires ».

H. DOMAINE D'APPLICATION DU REGLEMENT RPCT 2011

Le règlement RPCT2011 est destiné aux architectes, ingénieurs et techniciens chargés de la conception et le dimensionnement des constructions en terre. Il concerne les performances requises et les prescriptions techniques des structures de contreventement des constructions en terre vis-à-vis des séismes réglementaires.

Le concepteur doit être en mesure de trouver des solutions adaptées et optimisées au contexte du projet de réalisation d'une construction en terre pour atteindre les performances sismiques requises.

Les principes de base de la justification parasismique des constructions en terre sont similaires à ceux de la maçonnerie non armée. Le principe des Etats Limites est adopté

pour une mise en conformité avec celui de la conception et le dimensionnement des constructions en matériaux conventionnels.

Le Règlement Parasismique des Constructions en Terre RPCT 2011 s'applique :

- 1) Aux constructions en terre soumises à l'obligation de recours à un architecte et à un bureau d'études pour l'obtention du permis de construire. Les éléments porteurs principaux sont des murs en adobe, pisé, bauge ou moellons de pierres à mortier de terre. Le matériau terre peut être stabilisé ou non.
- 2) Les Constructions sont limitées à un niveau en zone d'accélérations maximales 4 et 3 et à deux niveaux en zone d'accélération maximale 2. 1 et 0.

Les zones d'accélérations maximales sont présentées sur la carte de la figure (17 et 18)

- 3) Les constructions en terre d'importance vitale de type : hôpitaux, cliniques, établissement de protection civile, les postes de police, les bâtiments administratifs de centre de décision en cas de séisme, sont limités à un seul niveau dans toutes les zones.
- 4) Les constructions en terre destinées au grand public de type : écoles, universités, bibliothèques, musées, grands lieux de culte, centres commerciaux, etc., sont limitées à un seul niveau en zones d'accélérations maximales 4 et 3.
- 5) La hauteur maximale des murs porteurs en terre est 4m pour une construction à un seul niveau et 6.5m pour une construction à deux niveaux.

III. OBJECTIFS DU REGLEMENT RPCT 2011

Le Règlement RPCT2011 constitue l'ensemble des performances requises et des prescriptions techniques, destinées à améliorer la performance sismique des constructions en terre.

Les objectifs principaux du Règlement RPCT 2011 sont :

- 1) Assurer la sécurité du public pendant un tremblement de terre
- 2) Assurer la continuité des services de base
- 3) Assurer la protection des biens matériels

IV. PHYLOSOPHIE DE PROTECTION SISMIQUE DU REGLEMENT RPCT2011

Ce règlement vise principalement l'amélioration de la performance sismique des constructions en terre. Les niveaux de performance sismique d'une construction en terre sont définis en fonction de l'ampleur de la secousse sismique comme suit :

Effondrement partiel et limité de la construction, caractérisé par l'apparition
d'une fissuration importante en cas de séismes majeurs.
Non effondrement en cas de séismes modérés avec apparition de fissuration et
éventuellement des ruptures localisées mineures.
La sécurité des vies humaines n'est pas menacée.
Non effondrement de la construction en cas de faible sismicité avec apparition de
fissures non préjudiciables à la réutilisation de la construction.

La ductilité et la stabilité globale de la construction en terre sont assurées par le respect des exigences minimales portant sur les règles générales de conception architecturale, les caractéristiques des matériaux utilisés, les performances mécaniques des structures de contreventement, les systèmes de renforcement, les conditions de liaisons entre les différentes composantes constitutives, les dispositions constructives et les conditions de mise en œuvre.

V. COMPORTEMENT SISMIQUE DES CONSTRUCTIONS EN TERRE

La méthode la plus appropriée pour la conception et la justification parasismique d'une construction en terre nécessite avant tout la compréhension des particularités de son comportement structural vis-à-vis des secousses sismiques. Cette section est destinée à tous les acteurs de la construction en terre pour les sensibiliser aux rôles des différentes prescriptions et des dispositions constructives. Elle permet d'éclaircir les zones critiques et les dangers associés en vue de concevoir des constructions simples et efficaces pour la réduction du risque sismique.

L'importance des dommages sismiques dans une construction en terre dépend de plusieurs facteurs :

- l'intensité du séisme,
- la géométrie de la structure et les dispositions structurales (la régularité en plan et en élévation de la construction, la configuration des murs, des toitures, des ouvertures et des fondations)
- · la qualité des matériaux et la qualité de leur mise en œuvre
- L'état de la structure avant l'avènement du séisme
- Les renforcements sismiques de la construction
- L'importance des dommages subis lors des séismes antérieurs

Les dommages observés dans des constructions en terre sont localisés dans les zones les plus critiques de la construction (les ouvertures, les angles des murs, la base du mur, les liaisons entre éléments constitutifs).

Les types de dommages sismiques principaux rencontrés dans les constructions en terre lors des tremblements de terre destructeurs sont décrits comme suit.

5.1 CONSTRUCTIONS EN TERRE DE TYPE PISE, ADOBE OU BAUGE

5.1.1 Comportement hors plan des murs

Les murs soumis aux actions sismiques perpendiculaires à leur plan et assujettis à des conditions d'appuis sur leurs bords sont soumis aux contraintes de flexion qui induisent des fissurations aux niveau des zones de concentration des contraintes telles les appuis, les contours des ouvertures et les sections à mi hauteur et mi longueur. Ces fissures prennent naissance au niveau des liaisons en tête du mur et se propagent verticalement et puis horizontalement dans le mur. Il faut noter que les fissures dues à la flexion hors plan sont parmi les premiers types de fissures à apparaître dans une construction en terre au cours d'une secousse sismique. Elles sont souvent présentes lors d'un séisme modéré et même faible avec des dégâts importants dans le cas de renversement de murs.

La stabilité hors plan d'un mur dépend des paramètres suivants :

- L'épaisseur et l'élancement du mur (h/t)
- Les conditions de liaison du mur avec les murs latéraux, fondation, plancher ou toiture.
- Les conditions et l'importance des charges verticales permanentes et d'exploitation.
- · La longueur du mur entre appuis de contreventement latéraux;

- Présence des ouvertures : Taille, emplacement et pourcentage de la surface totale des ouvertures par rapport à la surface totale du mur.
- La qualité des matériaux et de mise en œuvre du mur
- Etat actuel du mur (humidité à la base du mur, fissuration, etc.)

a) Fissuration et effondrement hors plan d'un mur

Les murs les plus sensibles à l'effondrement et au flambement hors plan sont souvent très élancés (h/t supérieur à 9) et présentant des liaisons non soignées avec le plancher ou la toiture. Les murs pignon sont souvent origine de fissuration importante si ce n'est pas un effondrement partiel ou total lors d'un séisme modéré.

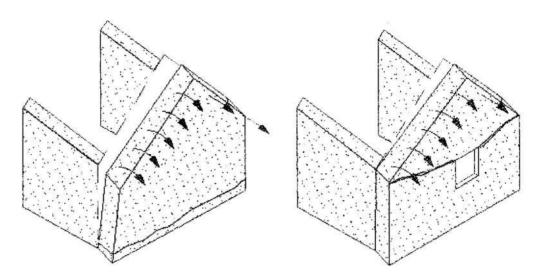


Fig.1. Renversement et effondrement partiel du mur pignon

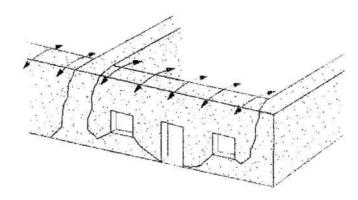


Fig.2. Fissuration par flexion hors plan d'un mur bien contreventé latéralement

La qualité de liaisons entre les murs et les appuis latéraux et horizontaux est un facteur stabilisant du mur vis-à-vis des actions transversales. Un chaînage au niveau du toit suffira pour stabiliser les murs contre le mouvement transversal hors plan.

L'effort normal représentant les charges verticales appliquées au mur agit comme facteur stabilisant et surtout si l'épaisseur du mur est importante. Il joue le rôle de force de rappel qui tend à ramener le mur vers sa position d'équilibre, ceci étant vrai pour les petits déplacements horizontaux par contre, en cas de grands déplacements, cet effort accélère le processus de renversement.

L'état de conservation à la base du mur a beaucoup d'influence sur sa stabilité. L'érosion, la diminution de l'épaisseur et l'humidité excessive sont des facteurs qui affaiblissent la résistance du mur et provoque son effondrement rapide.

Les murs faiblement contreventés sont les plus sensibles au renversement car ils ne sont pas soutenus dans la direction perpendiculaire à leur plan. Les contreventements d'un mur permettent d'améliorer sa stabilité et de limiter son mouvement transversal lors d'une secousse sismique. Les murs de clôture sont généralement non contreventés et sont vulnérables au renversement.

b) Fissuration horizontale à mi-hauteur du mur

Ce mécanisme de rupture est habituellement observé dans les constructions pour lesquelles les murs sont minces, élancés (h/t supérieur à 9) et bien liaisonnés au niveau des planchers et toitures. Il est caractérisé par l'apparition de fissures horizontales à mi hauteur du mur. Les constructions en terre ne sont pas toujours sources de ce type de dommages car les murs ont généralement une épaisseur assez grande et un rapport d'élancement faible.

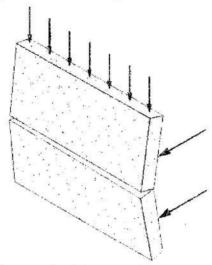


Fig.3. Rupture à mi-hauteur due à la flexion hors plan.

5.1.2 Dommages de comportement en plan du mur

Les murs porteurs sont souvent les éléments de contreventement des constructions en terre. Ils sont soumis à l'effet combiné de l'effort sismique de cisaillement situé dans leur plan et l'effort de compression de descente de charges statiques excentré longitudinalement le long de leur longueur. Les mécanismes de fissuration des murs chargés latéralement en plan sont caractérisés par :

Fissuration diagonale de cisaillement en X

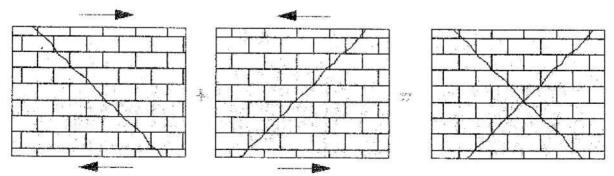


Fig.4. Fissures diagonales dues aux efforts de cisaillement

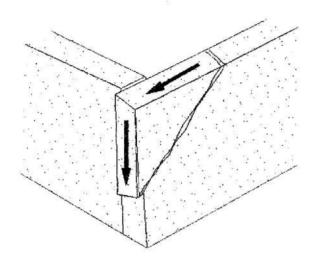
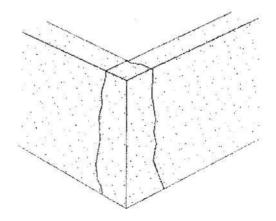
Fig.4. Fissures diagonales dues aux efforts de cisaillement

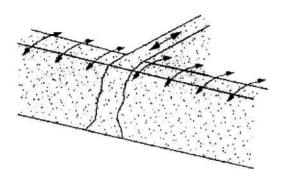
Les fissures se produisent souvent entre les ouvertures et peuvent être plus importantes pendant une période prolongée de la secousse. Ce phénomène est aggravé par l'effet combiné des charges de gravitée et les forces sismiques

5.1.3 Dommages d'angle

La concentration des contraintes au niveau des angles de jonctions (mauvaises jonctions des murs) est à l'origine des instabilités et de la fissuration d'angle. Les dommages sont de trois types

Fissuration diagonale due aux contraintes de cisaillement


Fig.5. Instabilité de l'angle du mur

Cette fissuration est particulièrement grave, car elle induit un effondrement partiel du mur et une perte d'appui de la structure du plancher ou de la toiture.

• Fissuration verticale à la jonction des murs

Cette fissuration est due à la mauvaise liaison de jonction des murs

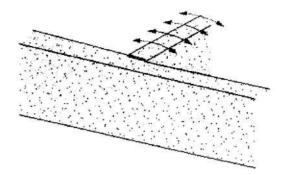


Fig. 6. Fissurations verticales de jonctions des murs

• Fissuration en croix et instabilité locale

Ce type de fissuration est du à l'effet combiné de cisaillement et de flexion qui peut être l'origine de l'instabilité et de rupture locale au niveau des jonctions.

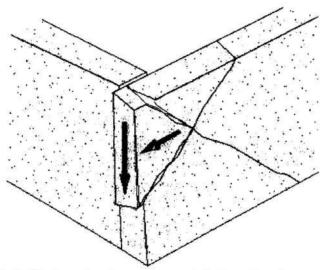


Fig.7. Rupture locale au niveau de la jonction des murs

5.1.4 Dommages au niveau des ouvertures des murs (fenêtres et portes)

Les angles et les zones avoisinantes des ouvertures sont les plus exposés aux dommages, car elles sont sources de concentration de contraintes en particulier les angles supérieurs et inférieurs.

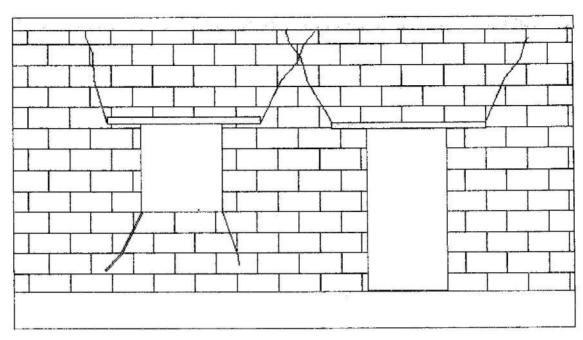


Fig.8. Fissures au niveau des ouvertures

5.1.5 Glissements et perte de contact entre un mur et le plancher ou toiture

Ce type de glissement se produit généralement entre la structure porteuse du plancher ou toiture (poutres principales, chaînages, diaphragmes ...) et les murs. En effet, les liaisons entre les murs et la toiture des constructions en terre sont généralement faibles : les poutres principales des planchers sont dans la plupart des cas soit posées directement sur le mur soit logés dans des saignées pratiquées en haut des murs. Un déplacement relatif suffisant entre le mur et la toiture provoque un effondrement de la construction. Ce phénomène est aussi fréquent chez les nouvelles constructions en terre ayant un chaînage au niveau de la toiture mais ne disposant pas de systèmes d'ancrage adéquat pour renforcer les liaisons entre le mur et le chaînage.

5.1.6 Dommages au niveau des attaches

Les attaches sont des dispositifs conçues et destinées pour améliorer les liaisons de jonctions entre les murs, les liaisons de jonctions entre les murs et les planchers ou toitures, les liaisons entre les murs et les chaînages, les liaisons entre les murs et les linteaux, les liaisons entre les fondations et les murs. Les dommages qui se produisent au niveau des attaches sont dus aux concentrations de contraintes d'interaction produites lors de la secousse sismique. Le choix du type d'attache et les conditions de sa mise en œuvre sont des paramètres très importants pour une meilleure stabilité locale des jonctions. Le mécanisme de transfert d'effort entre les différents éléments en interaction mérite une attention particulière pour comprendre le fonctionnement mécanique au niveau des ancrages des attaches. Il faut noter que malgré l'apparition des fissures aux voisinages des attaches, ces derniers sont de loin le meilleur moyen pour réduire la rupture locale des murs et améliorer la ductilité locale et globale de la construction.

5.1.7 Dommage au niveau des chaînages de liaison entre mur et toiture

Les fissures horizontales apparaissent dans la partie supérieure du mur lorsque celui ci est liaisonné au plancher ou à la toiture par le biais d'une poutre ceinture ou chaînage. Le chaînage doit être bien liaisonné au mur support pour permettre le transfert adéquat des contraintes de la toiture au mur.

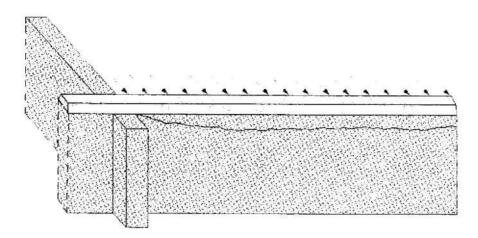


Fig.9. Fissures horizontales à la jonction entre le mur et le chaînage.

5.1.8 Dommages dues à l'humidité

La base du mur, affaiblie par l'humidité excessive, est particulièrement exposée à la fissuration qui se développe le long d'un mur. Le glissement du mur peut se produire le long de ces fissures et entraîner un effondrement de la partie supérieur du mur vers l'extérieur.

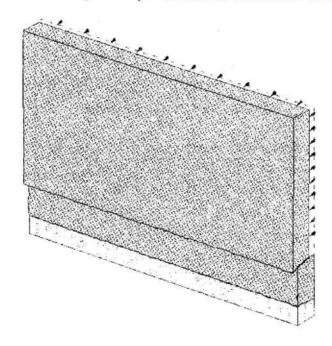


Fig. 10. Glissement d'un mur affaibli à la base par l'humidité

5.1.9 Autre facteurs

La fissuration existante due au retrait et au fluage du matériau terre, l'absence ou le disfonctionnement du système de drainage, les infiltrations d'eau au niveau de la couverture et des jonctions des murs, le phénomène de capillarité et le jaillissement des eaux de pluies, le manque d'entretien et de maintenance, les réparations antérieures non réfléchies sont les paramètres

recensés avoir des effets négatifs et qui peuvent déclencher un effondrement partiel ou totale d'une construction en terre.

5.2 CONSTRUCTIONS EN PIERRES.

Les types de dommages décris en 5.1 sont aussi présents pour les constructions en maçonnerie de moellons de pierres. D'autres types de dommages spécifiques aux constructions de maçonnerie en pierres non taillées et faiblement dressées, sont présentés.

Ces constructions sont généralement présentes dans les régions à forte pluviométrie avec abondance de moellons de pierres. Les constructions en maçonnerie de pierres sont réalisées d'unités de pierres taillées ou non qui sont assemblées par un mortier de jointement à base d'argile, de ciment ou de la chaux. L'appareillage des pierres taillées obéit aux mêmes règles de bonne pratique que la maçonnerie de briques ou d'adobe.

Les constructions en pierres de forme aléatoire et semi -taillées (voir la Fig.11), ont subi des dommages importants et un effondrement total pendant les séismes antérieurs ayant une intensité VII et plus, à l'échelle MKS.

Ce type de constructions en moellons de pierres est rencontré dans plusieurs régions et en particulier dans la province d'Al-Hoceima. Il est caractérisé par la présence de murs porteurs constitués de deux parois en maçonnerie de pierres de formes quelconques présentant un vide rempli de terre. Ces deux parois ne sont pas attachées entre elles pour assurer un comportement monolithique du mur. Le dernier séisme destructeur d'Al Hoceima a révélé la vulnérabilité sismique de ces types de constructions. La plupart de ces constructions ont subit des désordres importants et des effondrements.

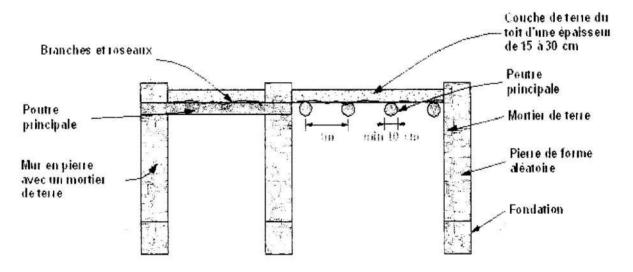
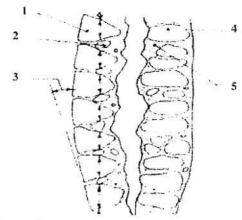



Fig.11. Elévation d'une construction traditionnelle en pierre.

Les principaux modes de rupture des constructions en maçonnerie de pierres sont :

- Séparation des murs aux coins et aux jonctions en T. Ces constructions sont plus vulnérables en ce qui concerne ce mode de rupture que celles en adobe ou en pisé, car les liaisons de jonctions sont plus fragiles.
- Décollement et flambement des parois et rupture à mi-hauteur des parois interne et externe, voir la Fig.12. Ceci est du principalement à l'absence de pierres ou d'attaches liant les deux parois ou à la mauvaise qualité du mortier de jointement à la jonction des deux parois. La

maçonnerie de pierres de tailles aléatoires non ou semi taillées ont des surfaces de contact très réduites et sont origines d'instabilité des murs en cas d'une secousse sismique.

- I Pierre taillée en forme arrondie 2 Petites pierres de nivellement.
- 3 Rotation du mur. 4 Paroi en pierre non taillée 5 Mortier de terre.

Fig.12. Décollement et flambement des parois constitutives d'un mur en pierres non taillées.

- Instabilité latérale et effondrement des parois soumises au poids important des planchers et toitures.
- Basculement des murs en pierres vers l'extérieur de la construction après leur détachement aux coins supérieurs dues aux forces d'inerties perpendiculaires à leur plan et aux efforts sismiques appliqués à leur tête par l'effet de diaphragme des planchers et toitures. Ceci se produit particulièrement quand le toit ou le plancher est formé de rondins de bois, de roseaux et d'une couche d'argile importante.

Généralement, de telles constructions sont complètement rasées sous l'effet d'un séisme d'intensité VIII ou plus sur échelle MKS. Les habitants se trouvent complètement enterrés et meurent sous les décombres de pierres. De telles constructions nécessitent des dispositions constructives qui permettent d'améliorer leurs performances sismiques. Les constructions de ce type sont classées comme dangereuses en zone sismique $Z_a = 4$ et $Z_a = 3$.

Ce pendant, la résistance à la compression d'un mur de pierres à base d'un mortier de terre est suffisante pour édifier une construction en RDC + 2. Il faut noter que la résistance au cisaillement du mur est due principalement au frottement de Coulomb.

VI. TYPOLOGIE DES CONSTRUCTIONS EN TERRE

Les typologies de construction en terre se distinguent l'une de l'autre par le matériau terre de construction utilisé et la technique de réalisation et de mise en œuvre des murs et structures porteuses. Les typologies de construction en terre les plus répandues au niveau du royaume sont l'objet de la présente réglementation.

Avant de commencer un projet de construction il faut se décider sur la technique la plus adaptée à la région. Le choix de la technique adéquate dépend d'un certain nombre de facteurs d'ordre technologiques, économiques, climatiques et culturels. L'établissement des critères de choix demande une bonne connaissance de tous ces facteurs. Parmi les facteurs les plus déterminants :

- L'emplacement du gisement de terre par rapport au lieu de la construction
- Les caractéristiques géotechniques de la terre
- Le temps de mise en œuvre nécessaire pour chaque technique
- Les performances mécaniques recherchées.

6.1 CONSTRUCTIONS EN PISE.

La technique du pisé consiste à damer la terre entre deux banches à l'aide d'un pisoir manuel ou mécanique. Les deux banches rigides doivent être t maintenues parallèles à une distance égale à l'épaisseur du mur à construire. La terre compactée acquiert de la cohésion et forme une masse homogène qui peut être élevée à des hauteurs importantes. Les constructions en pisé présente la caractéristique d'être la mieux adaptée en zones arides ou désertiques et exige une équipe de travail qualifiée; En effet, la qualité de réalisation et de mise œuvre des murs en pisé nécessite un savoir faire et une bonne maîtrise de la technique de construction en pisé telle que l'installation et le réglage des banches, le degré de compactage, l'appareillage des banchées et surtout au niveau des jonctions de murs, et le traitement des surfaces horizontales de reprise.

a) Choix du matériau terre

Le choix du matériau de construction pisé se fait selon la démarche classique de caractérisation géotechnique des matériaux en passant par les différentes étapes de la chaîne : de la prospection jusqu'au stockage du matériau.

Les principaux essais d'identification Identification du matériau terre

- Analyse granulo-sédimentométrique
- Détermination des limites d'Atterberg
- Détermination de la valeur du bleu de méthylène
- Détermination de la teneur en sulfates, en matières organiques, et en chlorures
- Essai Proctor pour déterminer la densité sèche maximale et la teneur en eau optimale (on répète cet essai au moins trois fois afin de s'assurer de l'homogénéité des résultats obtenus)
 - b) Caractéristiques géotechniques du matériau.

√ Granulométrie

La courbe granulométrique de la terre destinée au pisé doit appartenir au fuseau granulométrique dont les caractéristiques principales sont :

- Pourcentage de gravier non nul (2 à 10%)
- Pourcentage de sable entre 32 et 58 %
- Pourcentage de limons entre 8 et 16 %
- Pourcentage d'argiles entre 8 et 26 %

Les pourcentages exacts des différents constitutifs doivent être choisis et justifiés pour atteindre les performances requises.

✓ Plasticité

La plasticité d'une terre est caractérisée par trois indices : Limite de liquidité (LL), Limite de plasticité (LP) et l'indice de plasticité (IP).

Les terres convenables pour le matériau pisé ont un indice de plasticité (IP) compris entre 7 et 29 %, une limite de liquidité inférieure à 50 % et une limite de plasticité supérieure à 10%.

Si l'indice de plasticité est en dehors de cette fourchette, la terre ne peut être utilisée que si elle subit une correction granulaire ou si elle est stabilisée à la chaux ou au ciment

✓ Compactibilité

La compactibilité d'un matériau est caractérisée par sa teneur en eau optimale et sa densité sèche maximale. Ces deux paramètres sont déterminés par l'essai Proctor Standard ou Modifié. Ces paramètres doivent vérifier les fourchettes suivantes :

- Teneur en eau optimale: 7 % < Wopt < 16 %
- Densité sèche maximale : 1,7 % < Ds max < 2.1 %

La densité minimale admise est de 1,6t/m3 et la compacité doit être supérieure à 90%

✓ Composition chimique

Cette étude de composition chimique permet d'éliminer les matériaux contenant des matières organiques et les sels sulfuriques, surtout si la technique de stabilisation du matériau à la chaux ou au ciment est retenue

✓ Activité de l'argile

L'essai au bleu de méthylène permet de déterminer le volume du bleu de méthylène absorbé par les particules d'argiles.

La valeur au bleu de méthylène et la surface spécifique des argiles permet de définir les matériaux les plus indiqués pour la construction en pisé, soit :

- ➤ VB < 1,5 : La terre est bonne pour la construction en pisé
- 1,5 < VB<5: La terre à la limite acceptable moyennant une stabilisation
- VB>5 La terre est à exclure

En règle générale les terres dont la surface spécifique est comprise entre 20 et 100 m2/g sont retenues

✓ Matériau stabilisé

Il est recommandé d'utiliser deux types de stabilisants : la chaux ou le ciment.

- Ciment: la stabilisation au ciment est plus compatible avec les terres sableuses avec une teneur en matières organiques inférieures à 2 %. Le taux du ciment sera déterminé en fonction de l'agressivité du climat de la région et de la résistance recherchée (généralement entre 4 et 8%)
- Chaux aérienne éteinte: Le processus de durcissement doit se faire à l'air libre mais pas sous l'eau. Son action est plus efficace sur les terres argileuses. On recommande pour le pisé un pourcentage de chaux compris entre 6 et 10% en masse.

c) Technique de mise en œuvre.

Réalisation des murs en pisé

La construction des murs en pisé consiste à compacter la terre humide entre deux banches, généralement en bois. Le matériau pisé humide est déposé en couche sur une épaisseur de 10cm environ, ensuite elle est compactée pour atteindre la densité désirée. La teneur en eau doit être

faible et proche de la teneur en eau optimale déterminé par l'essai Proctor. Pour améliorer l'adhérence entre les différentes couches, la surface du mur doit être aspergée d'eau avant d'asseoir la prochaine couche de 10cm. La hauteur total d'une banchée réalisée de cette manière et de l'ordre de 0.8 à 1m. Le matériau terre est compacté à 98 % de la densité maximale sèche. Une énergie de compactage élevée mène à une haute résistance mais seulement jusqu'à une certaine limite. L'énergie de compactage doit être normalisée. Le procédé suivant est recommandé : 50 coups par surface de 1000 cm2 de mur en utilisant une dame en bois ayant un poids de 8 à 10 kg Pour contrôler les fissures de retrait, des essais préliminaires sont exigés pour déterminer la quantité de sable à ajouter à la terre argileuse.

Chaque jour on réalise I m de hauteur, les banches fraîchement réalisées ne peuvent supporter la masse des piseurs et d'une autre banche superposée. La succession des banches se fait sur un même plan horizontal par glissement du coffrage à partir du premier angle réalisé.

Le décoffrage des banches se fait aussitôt après la fin du compactage. Si le coffrage provoque un arrachement superficiel, cela indique que le compactage est insuffisant ou la teneur en eau n'est pas adéquate par conséquent, il faut démolir et reprendre la banche convenablement.

Les banches stabilisées doivent subir une cure de 3 jours. En forte chaleur, il est recommandé de couvrir les banches par un plastique.

L'appareillage des banchées obéit aux mêmes dispositions adoptées pour les murs en maçonnerie de briques ou d'adobe.

• L'épaisseur minimale des murs porteurs en pisé est 40cm.

d) Caractéristiques mécaniques

Le matériau pisé a une bonne résistance à la compression et une faible résistance à la traction et au cisaillement

• Résistance à la compression

La résistance à la compression du matériau pisé dépend de son indice de vide, de la résistance au cisaillement des fines constitutives des résistances des agrégats et de sa teneur en eau au moment de l'essai d'écrasement. L'essai de résistance à la compression sur le pisé se fait au laboratoire d'une manière similaire à celui utilisé pour le béton hydraulique. Les éprouvettes sont cylindriques (16x32cm ou 25x50cm) (6 éprouvettes au minimum)(vitesse 10mm/mn). Ces essais permettent de déterminer la résistance caractéristique fc. Ces essais permettent aussi de déterminer le module de déformation élastique.

- La résistance caractéristique minimale est fc = 0.5N/mm2.
- Résistance à la traction par flexion des murs en pisé.

En l'absence de résultats d'essai de résistance à la traction par flexion, la résistance à la traction par flexion est prise égale à ftf =0.1fc où fc est déterminée à partir d'essai de résistance à la compression en MPa.

Résistance au cisaillement des murs en pisé.

La résistance au cisaillement est égale à fes = 0.07fc. En l'absence des résultats d'essais, la résistance au cisaillement est prise égale à fes =0.08MPa.

CONSTRUCTION EN ADOBE ET BAUGE

CHOIX DES MATERIAUX

a) Convenance de la terre pour l'adobe et bauge

 Les briques d'adobe sont fabriquées à partir d'une terre fine et essentiellement argileuse. Les débris végétaux et les résidus organiques sont éliminés par décapage du sol végétal avant extraction du matériau.

Une teneur en matière organique de 3% n'est pas tolérée. Les cailloux de plus de 5 mm de diamètre sont éliminés.

L'analyse granulométrique doit aboutir aux fourchettes suivantes :

- La fraction granulaire de la terre est définie par les pourcentages suivants:
 - \checkmark 10 20% en argile
 - \checkmark 15 25% en limon
 - \checkmark 50 70% en sable
 - ✓ LP et IP compris entre 10% et 25%, LL entre 25% et 45%.

Les pourcentages exacts des différents constitutifs doivent être choisis et justifiés pour atteindre les performances requises

b) Essais préliminaires

Ce type d'essai in situ est un moyen simple qui permet de raffiner les investigations granulométriques sur le matériau potentiel pur la construction en adobe.

Cet essai est plutôt un indicateur de la qualité du matériau de l'auto construction en adobe.

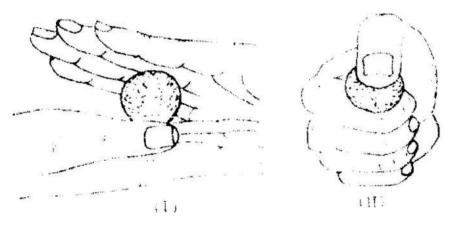


Fig.13. Essai in situ

Cinq ou six petites boules de terre ayant approximativement 2 cm de diamètre sont préparées et laissées à sécher pendant 48 heures. Puis on procède à leur écrasement entre l'index et le pouce. Si aucune ne s'écrase, la terre contient assez d'argile pour être utilisée dans la construction en adobe, à condition que le contrôle de microfissures provoquées par le processus de séchage soit effectué. Si quelques-unes des boules écrasées se brisent, la terre n'est pas adéquate parce qu'elle ne contient pas assez d'argile et devrait être écarté.

c) Exigences générales sur les unités d'adobe

Géométries et dimensions des unités d'adobe.

L'unité d'adobe peut avoir une section carrée, rectangulaire ou autres formes géométriques spéciales pour la construction des angles des murs qui présentent un angle différent de 90°. Les dimensions de l'unité d'adobe doivent avoir les proportions suivantes :

- · Pour les unités rectangulaires, la longueur doit être le double de la largeur
- · La hauteur de l'unité d'adobe doit être de l'ordre de 1/4 de sa longueur
- La hauteur minimale de l'adobe est de 8 cm

En zone sismique 4 et 3, les unités d'adobe des murs porteurs doivent avoir des dimensions minimales géométriques de 20x40x10cm.

L'épaisseur minimale des murs porteurs en adobe est 40cm pour les zones sismiques 1, 2, 3, et 4

Les briques d'adobe 20x40x10cm sont recommandés.

- d) Production et conditions de réalisation des unités d'adobe.
- La mise en forme de l'adobe est réalisée à l'aide de moules en bois, acier ou en plastique. Pour une bonne qualité des unités d'adobe, les moules doivent être solides, propres et leur mouillage est impératif avant chaque utilisation. Maintenir le sol au repos et humide pendant 24 heures avant la fabrication des unités d'adobe. Après démoulage, les briques sont séchées dans l'ombre pendant 24 heures puis retournée sur l'autre base et laissée sécher pendant une durée de 4 jours à une semaine. Le séchage individuel de chaque unité à l'air est nécessaire. Le stockage se fait dans un milieu sec. La production des unités d'adobe nécessite beaucoup de soins et peut être manuelle ou mécanisée.
- Les unités d'adobe peuvent présenter des réservations (évidements, trous) perforées sur la section transversale qui serviront de passage pour les éléments de renforcement pendant la construction du mur.
- Les trous doivent être perpendiculaires à la section transversale et ne doivent pas dépasser 12 % de l'aire totale de la section.
- e) Essais de contrôle des fissures

Au moins huit murets constitués chacun d'une paire d'adobes sont réalisés avec des mortiers présentant différentes proportions de sol et de sable grossier. Il est recommandé que le rapport Sol/sable varie entre 1Sol /0sable et 1Sol /3sable en volume. Le muret ayant la plus faible proportion en sable, qui une fois ouverte après 48 heures, ne montre pas de fissures visibles dans le mortier, indiquera le rapport sol/sable le plus adéquat pour les constructions en adobe et offrant une plus haute résistance.

f) Essai de résistance des unités d'adobe :

Essai qualitatif

Cet essai est un indicateur qualitatif de la résistance des blocs d'adobe et constitue un outil précieux pour l'auto construction en terre.

La résistance des blocs d'adobe peut être évaluée qualitativement de la façon suivante :

 Après quatre semaines d'exposition au soleil, l'adobe devrait être assez résistant pour supporter le poids d'une personne de 60 à 70 kg). Si elle se casse, l'ajout de plus d'argile et de fibre est nécessaire.

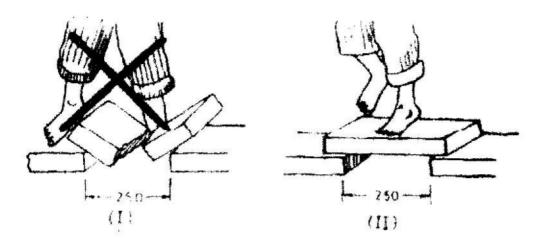


Fig.14. Essai qualitatif de résistance des unités d'adobe

6.2.2 MURS EN ADOBE

a) Résistance à la compression des unités d'adobe

La résistance à la compression de l'unité d'adobe est déterminée à partir de l'essai d'écrasement réalisé sur des éprouvettes cubiques obtenues à partir des unités d'adobe. La dimension de l'éprouvette est la plus petite dimension des unités d'adobe (10x10x10cm). Le nombre d'éprouvettes est au minimum 6.

La résistance ultime à la compression (f_0) est la valeur dépassée par 80% des éprouvettes écrasées. Les unités d'adobe doivent être parfaitement sèches avant de les soumettre à l'essai d'écrasement.

La résistance ultime minimale à la compression est $f_0 = 12 \text{ kg/cm}^2$

La résistance à la compression est un indice de qualité des unités d'adobe mais pas la maçonnerie d'adobe.

b) Résistance à la compression de la maçonnerie d'adobe.

La résistance à la compression de la maçonnerie d'adobe peut être déterminée par :

Essais sur murets et appareillage d'essai sur site.

Les murets en maçonnerie d'adobe sont réalisés avec un élancement (hauteur/longueur) de l'ordre de 3, tout en soignant l'alignement et la verticalité des éléments.

Le nombre minimal d'adobe est de quatre et l'épaisseur des joints est de 2cm. L'appareillage de l'essai est présenté sur la Figure 15.

Les murets doivent être séchés pendant 30 jours avant de les soumettre à l'essai d'écrasement. Le nombre minimal des murets à écraser est 3 murets.

A partir de ces essais, la résistance ultime à la compression (f_m) du muret est obtenue. La valeur retenue est celle qui est dépassée par celles de deux murets sur trois.

La contrainte de calcul à la compression d'un mur en adobe (f_m) est obtenue par l'expression $f_m = 0.25 f_m$ '

Dans le cas où on ne dispose pas de résultats sur murets, on peut utiliser comme contrainte de calcul à la compression suivante :

$$f_m = 0.15 f_0$$

La valeur minimale de la contrainte de calcul à la compression d'un mur en adobe est 2kg/cm²

Fig.15. Muret pour essai d'écrasement à la compression

* Résistance au cisaillement de la maconnerie d'adobe.

La résistance au cisaillement de la maçonnerie d'adobe peut être déterminée par:

✓ Essai de compression le long de la diagonale du muret

Le principe de l'essai est indiqué sur la figure 16. Un minimum de trois prototypes d'essai doit être utilisé. La contrainte de cisaillement admissible dans la maçonnerie est obtenue par l'expression :

$$V_m = 0.4 f_i$$

Où $f_i' = \frac{P}{2ae_m}$ est la contrainte ultime obtenue à partir d'essais sur murets.

La valeur retenue est celle dépassée par celles de deux sur trois murets écrasés.

Dans le cas où on ne dispose pas de résultats sur murets, on peut utiliser la contrainte de calcul au cisaillement suivante :

$$V_m = 0.25 \, kg / cm^2$$

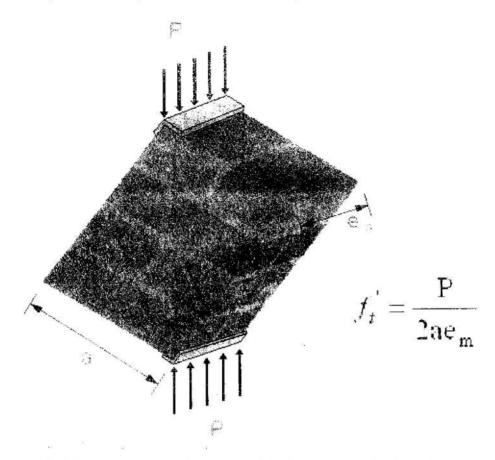


Fig.16. résistance au cisaillement de la maçonnerie d'adobe

6.3 CONSTRUCTIONS EN MACONNERIE DE PIERRES

6.3.1 Prescriptions de mise en oeuvre

Les constructions en maçonnerie de pierres sont réalisées d'unités de pierres taillées ou non qui sont assemblées par un mortier de jointement à base d'argile, de ciment ou de la chaux. L'appareillage des pierres taillées obéit aux mêmes règles de bonne pratique que la maçonnerie de briques ou d'adobe.

La résistance à la compression d'un mur de pierres à base d'un mortier de terre est suffisante pour édifier une construction en RDC + 2. Il faut noter que la résistance au cisaillement du mur est due principalement au frottement de Coulomb.

Les murs en maçonnerie de moellons sont réalisés selon leur hauteur par tranches de hauteur maximale 60cm.

L'épaisseur minimale des murs en moellons de pierres est 40cm.

Les pierres Taillées ou non doivent être allongées de longueur minimale égale à ¾ de l'épaisseur du mur. Ceci permet d'assurer le monolithisme et la meilleure liaison selon l'épaisseur du mur. Les pierres de formes enroulées de longueur inférieure à 15cm ne

doivent pas être utilisées comme pierres principales de construction des murs en maconnerie.

Il y a nécessité d'introduire des éléments de liaisons selon l'épaisseur sous forme de bâtonnets en bois ou de pierres allongées ou d'épingles d'aciers en T8, de longueur égale à l'épaisseur du mur est noyés dans le mur. Ces éléments de renfort sont placés tous les 1m en longueur et 60cm en hauteur du mur.

6.3.2Caractéristiques mécaniques des pierres de constructions

Les caractéristiques mécaniques des pierres sont déterminées par les essais au laboratoire; Les résistances à la compression et le poids spécifiques des pierres de différentes origines sont données dans le tableau suivant.

Résistance moyenne des pierres à l'écrasement

Désignation de la pierre	Poids spécifique Kg/m³	Charge d'écrasement Kg/cm²	
Calcaires durs	2100 à 2600	200 à 800	
Calcaires demi durs, mollasses dures	1700 à 2000	70 à 160	
Calcaires tendres	1400 à 1750	25 à 80	
Basalte	2688 à 3030	2600 à 3334	
Granit	2600 à 2710	1200 à 1716	
Grès	2070 à 2530	310 à 1600	

Les pierres de construction ont généralement des résistances à la compression suffisantes pour réaliser des murs porteurs avec un mortier à ciment ou à la chaux.

La résistance minimale à la compression pour le calcul est 0.5 MPa.

VII. ANALYSE SISMIQUE DES CONSTRUCTIONS EN TERRE.

HYPOTHESES DE CALCUL

- a) L'analyse sismique des constructions en terre est faite dans le domaine élastique linéaire.
- b) La ductilité de la construction est globale et assurée par un ensemble d'exigences minimales sur la qualité des matériaux, les attaches, les dispositions constructives et la qualité de mise en œuvre.
- c) Les principes de calcul et d'analyse des constructions en terre sont similaires à ceux de la maçonnerie conventionnelle non armée.

7.2 ACTIONS SISMIQUES

Le calcul de l'effort sismique appliqué à une construction en terre nécessite la connaissance des paramètres sismiques suivants :

1) Zonage sismique du Maroc

Le zonage sismique adopté pour évaluer les actions sismiques sur les constructions en terre est celui du Règlement de Construction Parasismique des Bâtiments (RPS2000). Ce zonage est définit par une carte d'accélérations maximale et une carte de vitesses maximales, voir Figures (17) et (18).

Le risque sismique de chaque zone est défini par l'accélération maximale ou la vitesse maximale du sol ayant une probabilité d'apparition de 10% en 50 ans, ce qui correspond à des séismes modérés et une durée de vie moyenne de la construction de 50 ans.

Les accélérations maximales pour chaque zone sont définies dans le tableau 1.

Tableau 1 : Accélérations maximales

Zones : Z _u	Accélérations maximales A_{max} (g = 9.81m/s ²)
0	0.10
I	0.13
2	0.16
3	0.18
4	0.20

Les vitesses maximales pour chaque zone sont définies dans le tableau 2.

Tableau 2: Vitesses maximales

Zones : Zv	Vitesses maximales V _{max} (m/s)
0	0.00
1	0.07
2	0.1
3	0.13
4	0.17



Fig. 17 : Zones d'accélérations maximales du sol

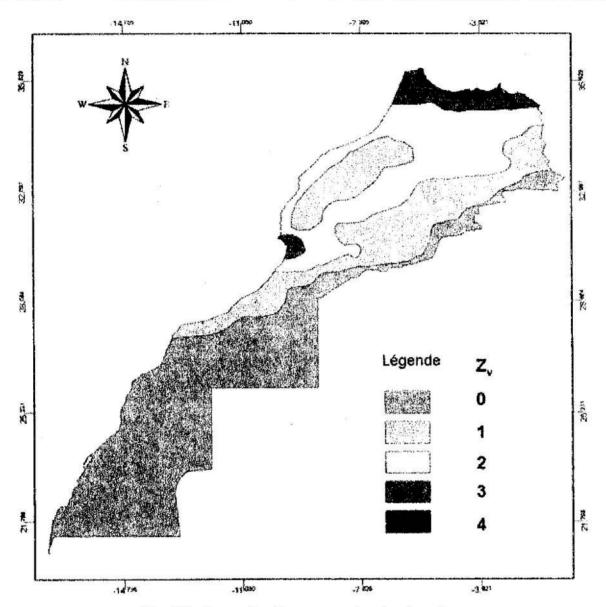


Fig. 18: Zones de vitesses maximales du sol

2) Classifications des constructions :

Les constructions en terre sont réparties en trois classes selon leur degré d'importance socio-économique.

- Classe I: Constructions en terre d'importance vitale :
 - ✓ Constructions de première nécessité: Hôpitaux, cliniques, protection civile, postes de police, constructions administratives de centre de décisions en cas de séisme.
- Classe II: Constructions en terre du grand public
- ✓ Constructions d'importance socioculturelle : Constructions scolaires et universitaires, bibliothèques et musées, les salles de spectacles et de sport, les grands lieux de culte.
- ✓ Constructions en terre recevant plus de 300 personnes : salles de fête, salle d'audience, centre commerciaux, etc.
- Classe III: Constructions ordinaires en terre

- ✓ Constructions en terre n'appartenant pas aux classes I et II, telles que les constructions à usage d'habitation, de bureaux ou de commerce.
- 3) Effort sismique horizontal

L'effort sismique latéral résultant à la base de la construction en terre, V doit être calculé à l'aide de l'expression suivante :

V=SICW; (1)

Avec:

- S : le coefficient du site donné par le tableau 2
- I : le coefficient d'importance donné dans le tableau 3
- C : Coefficient sismique donné dans le tableau 4
- W : la charge prise en poids de la structure

Le coefficient de comportement est prix égal à 1 ; hypothèse de comportement élastique

Tableau 2 : Coefficients de sites

Sites	Nature du sol de fondation	Coefficients de site : S
S1	Rocher toute profondeur Sols fermes épaisseur < 30 m	1
S2	Sols fermes épaisseur ≥30 m Sols meuble épaisseur <30 m	1,20
S3	Sols meubles épaisseur ≥15 m Sols Mous épaisseur <10 m	1, 4
S4	Sols Mous épaisseur ≥10 m	1.8
S5	Conditions spéciales	*

^{*}La valeur du coefficient de S5 doit être établie par un spécialiste.

En cas de manque d'informations sur les propriétés du sol pour choisir le type de site adéquat, on adopte le coefficient S2.

Tableau 3: Coefficient d'importance

Classes de constructions	Coefficient I	
Classe I	1.3	
Classe II	1.2	
Classe III	1.0	

Tableau 4 : Coefficient sismique des zones.

Zones sismiques : Z _a	Coefficients sismiques (C)	
0	0.10	
1	0.13	
2	0.16	
3	0.18	
4	0.20	

La charge W de la structure correspond à la totalité des charges permanentes G et une fraction ¥des charges d'exploitation Q en fonction de la nature des charges et leur durée. On prend

 $W = G + \Psi O$

le coefficient Ψ est donné au tableau suivant:

Tableau 5: Coefficient Ψ

Nature des surcharges	Coefficient Y	
1) Constructions à usage d'habitation et administratif	0.2	
2) Constructions d'utilisation périodique par le public telles que salles d'exposition, salles de fêtes		
3) Constructions d'utilisation telles que restaurants, salles de classe	0.4	
4) Constructions dont la charge d'exploitation est de longue durée.	1.0	

4) Répartition de l'effort sismique horizontal au niveau des étages

a) Plancher traditionnel (Diaphragme souple)

Les planchers traditionnels de par leurs conceptions et leurs réalisations se comportent comme des structures souples en plan et par conséquent ils ne sont pas des vrais diaphragmes rigides en plan, qui sous l'effet des charges horizontales subissent deux translations en plan et éventuellement une rotation d'ensemble. En ce qui concerne les planchers traditionnels, l'effort sismique horizontal est réparti sur les murs de contreventement au prorata de leurs surfaces d'influence. Cette descente de charges sismiques permet de se contenter d'étudier la stabilité d'un mur isolé sous l'effet combiné des charges verticales et horizontales parallèles et perpendiculaires au plan des murs.

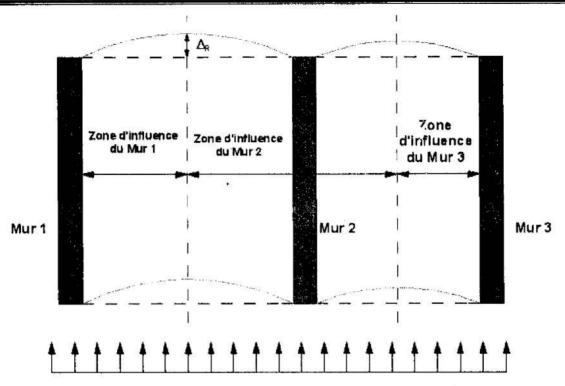


Fig. 19. Plancher traditionnel souple : Zone d'influence des murs. Composante du séisme dans la direction des murs 1,2 et 3.

L'effort sismique horizontal repris par chaque mur est donné par l'expression (1), ou W est le poids total du mur y compris les charges permanentes et les charges d'exploitations correspondantes aux zones d'influence du mur considéré. La zone d'influence concerne aussi les murs perpendiculaires appuyés sur le mur en question. Ce poids total correspondant à un mur de zone (z) est indiqué par W_z et l'effort sismique horizontal repris par le mur est donné par : $V_z = vSICW$.

Cas d'une construction en terre à un seul niveau :

L'effort sismique V_z est appliqué en tête du mur. L'étude de stabilité du mur dans son plan, est faite sous l'effet combiné des actions verticales statiques et horizontales (V_z) parallèles au plan de mur.

Cas d'une construction en terre à deux niveaux :

L'effort sismique horizontal V_z est réparti au niveau des planchers des deux niveaux selon l'expression suivante :

$$V_{ii} = \frac{V_{i}(W_{ii}H_{i})}{(W_{i1}H_{1} + W_{i2}H_{2})}$$

Où

- Hi est la hauteur du niveau considéré (i) compté à partir du haut du soubassement du mur.
- W,, est le poids total du niveau i

NB.
$$V_z = V_{z1} + V_{z2}$$

b) Plancher rigide dans son plan

Un plancher rigide de type dalle en béton armé ou en bois massif et rigide reposant sur un chaînage en béton armé ou en bois bien liaisonné aux murs porteurs d'appui, subi un déplacement dans son plan (deux translations et éventuellement une rotation d'ensemble), sous l'effet de l'action sismique. Ce diaphragme rigide permet une descente de charge sismique au prorata des rigidités latérales des murs de contreventement.

• Centre de masse d'un niveau (CM)

Le centre de masse d'un niveau est le centre de gravité des masses constitutives d'un plancher ou toiture. La participation des murs porteurs est faite en considérant leur poids concentré au niveau du plancher ou la toiture. Il est définit par les coordonnées suivantes $(X_m \ , Y_m)$.

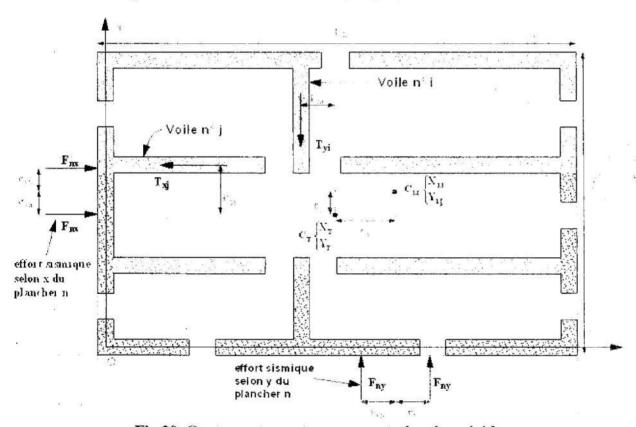


Fig.20. Contreventement par murs et plancher rigide

Centre de torsion (CT).

Le centre de torsion d'un plancher ou toiture d'un niveau est le centre de gravité des rigidités latérales des murs de contreventement de ce niveau. Il est défini par les coordonnées suivantes (X_T, Y_T) .

Excentricité de torsion Les excentricités de torsion sont données par e_x = |X_m - X_T|; e_y = |Y_m - Y_T|,

Excentricité accidentelle de torsion

Pour tenir compte des incertitudes de positionnement réel du centre de masse et du caractère spatiale du mouvement sismique, le centre de masse CM est déplacé de sa position nominale d'une excentricité accidentelle dans la direction X et Y respectivement donnée par

 $e_{xa} = \pm 0.05 Lx$ et $e_{ya} = \pm 0.05 Ly$

• Distribution de l'effort sismique sur les murs de contreventement

L'effort sismique agissant dans une direction au niveau du plancher ou toiture est totalement repris par les murs parallèles à cette direction. La participation des murs perpendiculaires à cette direction est négligée.

L'excentricité totale à prendre en compte pour le calcul du moment de torsion est donnée par :

 $e_{xd} = e_x \pm 0.05Lx$ pour un séisme agissant dans la direction Y $e_{yd} = e_y \pm 0.05Ly$ pour un séisme agissant dans la direction X

Les Moment de torsion correspondant sont donnés par les expressions suivantes :

 $C_{nx} = e_{xd} F_{nx}$ $C_{nv} = e_{yd} F_{ny}$

Les efforts tranchants repris par les murs de contreventement dans une direction donnée X ou Y sont donnés par les expressions suivantes :

Séisme agissant dans la direction X et Y

$$T_{iv} = \frac{I_{yi}}{\sum_{k} I_{yk}} F_{nx} + \frac{r_{yi} I_{yi}}{\sum_{k} r_{yk}^{2} I_{yk}} C_{nx}$$

$$T_{iy} = \frac{I_{xi}}{\sum_{k} I_{xk}} F_{ny} + \frac{r_{xi} I_{xi}}{\sum_{k} r_{xk}^{2} I_{xk}} C_{ny}$$

Ou r_{xk} et r_{yk} sont les coordonnées du mur (k) compté par rapport au centre de torsion CT.

L'effort de cisaillement de torsion du au moment C_{ny} ou C_{nx} qui s'oppose à celui du à l'effort sismique F_{ny} ou F_{nx} est négligé.

5) Murs présentant des ouvertures

La résistance d'un mur soumis à l'effet combiné de l'effort normal, effort horizontal sismique et le moment fléchissant est déterminée sur la base des caractéristiques de toute la section du mur. En cas ou le mur présente des ouvertures (portes et fenêtres) régulièrement espacées en hauteur et en longueur, le mur est considéré constitués de murs élémentaires Les actions latérales sismiques appliquées à un mur au niveau de

chaque plancher ou toiture sont réparties sur les murs élémentaires constitutifs en utilisant les mêmes principes que ceux utilisés pour les murs en maçonnerie conventionnelle non armée et présentant des ouvertures.

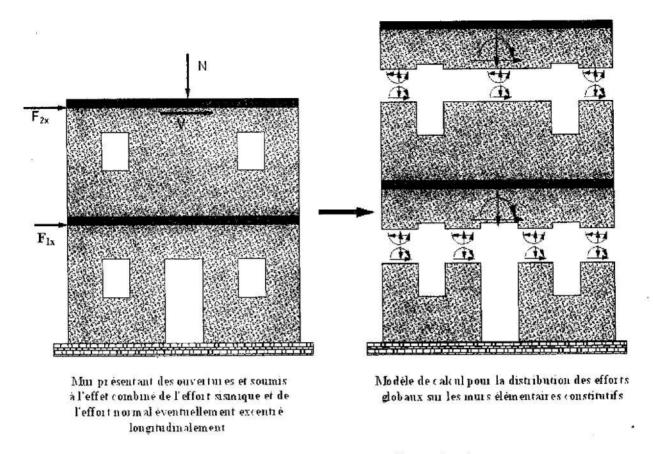


Fig.21. Modèle de répartition des efforts sismiques

6) Etude de stabilité des murs en terre.

1. Murs en terre soumis aux charges verticales centrées latéralement

Le mode de rupture des murs en terre soumis aux charges verticales réparties et centrées se traduit par une fissuration verticale. Ceci est du au fait que la déformation latérale du mortier de joint horizontal de la maçonnerie d'adobe est plus grande que celle des briques. Ce ci est encore vrai pour la maçonnerie de pisé car la déformation latérale des blocs est beaucoup plus importante que celle dans la direction du compactage du pisé. La brique est soumise à des contraintes de traction latérales. Donc la résistance à la compression de la maçonnerie est limitée par la résistance à la traction des blocs ou briques. Ainsi, la résistance à la compression de la maçonnerie dépend de la résistance à la traction des blocs ou briques, de la résistance à la compression des joints (plus la résistance est grande et moins la déformation transversale est faible).

NB: la déformation latérale du joint est parfois utile pour accommoder sans fissuration la possibilité de tassement différentiel des murs.

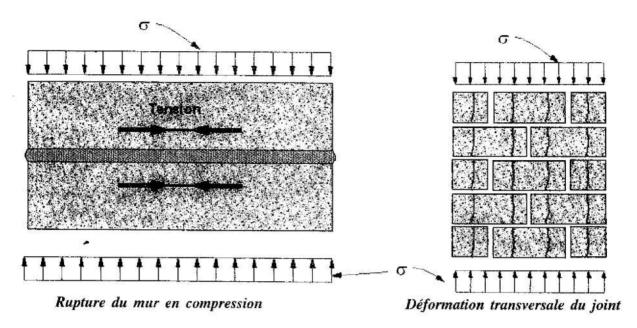


Fig.22. Rupture de la maçonnerie par compression simple

La résistance de la maçonnerie dépend d'autres paramètres :

- ✓ Appareillage de la maçonnerie: Un mur ayant une seule brique le long de son épaisseur est plus résistant que celui réalisé par deux briques le long de son épaisseur.
- ✓ L'épaisseur du joint qui doit être entre 10mmt 15mm.
- ✓ Le nombre de joints horizontaux le long de la hauteur du mur. Les grandes briques sont meilleurs que les petites.
- ✓ Les joints doivent être bien remplis pour constituer une bonne assise pour les briques (attention au retrait excessive des mortiers).

2. Murs en terre soumis aux charges verticales excentrées latéralement

Les charges verticales réparties sont généralement excentrées latéralement. En effet, les efforts de compression transmis en tête des murs par les planchers ou toitures ne sont jamais centrés (défauts de réalisation et de rectitudes les charges transmises par les planchers adjacents ne sont pas symétriques, etc.).

La charge transmise au mur par un des planchers ou toitures adjacentes est considérée appliquée à une excentricité égale à t/3 de la surface d'impact de la charge. L'excentricité résultante latérale de l'effort de compression vertical est donnée par l'expression suivante :

✓ Excentricités en tête et pied du mur

$$e_i = \frac{M_i}{N_i} + e_{hi} + e_a \ge 0.05t$$

M_i: Moment de flexion en tête ou pieds du mu du aux excentrements des charges verticales représentées par l'effort verticale Ni

 e_{hi} : Excentricité en tête ou en pied du mur due aux charges transversales (vent ou séisme)

 e_a : Excentricité accidentelle pour tenir compte des incertitudes et la non

rectitude du mur: $e_a = \frac{h_{eff}}{450}$; h_{eff} est la hauteur effective du mur.

La hauteur effective d'un mur porteur dépend de ses conditions de liaison et d'appuis sur ses bords.

Pour le cas de combinaison de charge la plus défavorable l'excentricité effective équivalente ne doit pas dépasser (t/6), t épaisseur du mur

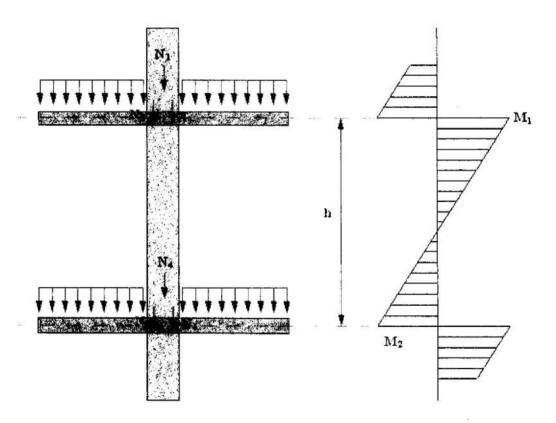


Fig.23. Mur soumis à la flexion composée verticale

a. Elancement des éléments verticaux (murs et piliers)

L'élancement d'un mur donnée par :

$$S_r = \frac{\mathbf{a}_v \mathbf{h}}{\mathbf{t}}$$

Avec:

a_v = 0,75 Si le mur est appuyé latéralement et encastré en tête et à la base

0.85 Si le mur est appuyé latéralement aux deux extrémités et encastré en tête ou en bas du mur

1.00 Si le mur est appuyé latéralement et rotule en tête et en pied du mur.

2.00 Si le mur est appuyé latéralement et encastré à sa base

h: hauteur du mur

t : épaisseur du mur considéré

b. Critère de résistance des murs en flexion verticale

L'effort ultime appliqué N* doit vérifier la condition de résistance suivante :

 $N \leq k \emptyset N_n$

Nu = fc . Am : Effort Normal résistant sans tenir compte de l'effet d'élancement

fc : résistance à la compression du mur en terre

Am : section du mur en terre

Ø : Coefficient de sécurité partiel sur le matériau.

 $\emptyset = 0.6$: Cas de compression simple

 $\emptyset = 0.8$: Cas de flexion

 $\emptyset = 0.7$: Cas de cisaillement

 $\emptyset = 1$ en calcul sismique

Le facteur de réduction, k, dépend de l'élancement et de l'excentricité et est donné dans le tableau suivant :

Facteur de réduction (k) en fonction de l'élancement et l'excentricité.

Elancement (S_r)	Facteur de réduction (k)					
	Rapport (e/t)					
	<0.05 (Note 4)	0.1	0.20	0.30	0.33	
6	1.00	0.78	0.56	0.38	0.32	
8	0.94	0.73	0.54	0.34	0.29	
10	0.88	0.67	0.49	0.31	0.25	
12	0.82	0.62	0.45	0.27	0.22	
14	0.76	0.56	0.40	0.23	0.18	
16	0.70	0.51	0.35	0.20	0.15	
18	0.64	0.45	0.31	0.16	0.11	

NOTE-

- (1) les valeurs de k pour (Sr) = 6, correspondent à la rupture par écrasement, les autres valeurs correspondent à la rupture par instabilité latérale.
- (2) l'interpolation linéaire peut être utilisée pour les valeurs intermédiaires.
- (3) e = est la grande excentricité en tête ou à la base du mur
- (4) Les valeurs de k pour e/t = 0.05 sont applicables aux piliers seulement

3. Comportement en plan des murs sous l'effet sismique horizontal

Les modes de rupture des murs soumis aux charges verticales et horizontales sont de trois types et sont présentés dans le schéma suivant.

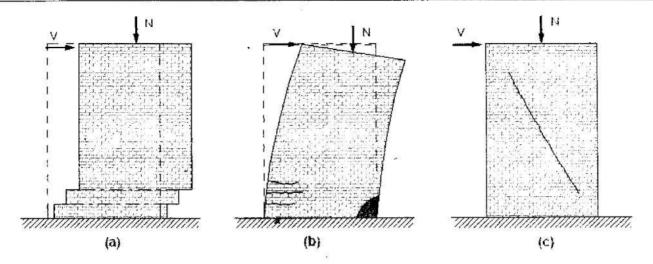


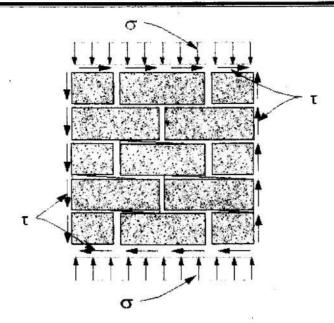
Fig. 24. Modes de rupture d'un mur en terre s soumis un chargement dans le plan.

- (a) Rupture par glissement
- (b) Rupture de flexion
- (c) Rupture par cisaillement

a) Rupture par glissement

Le mur subit un déplacement relatif le long d'un plan de faible résistance au cisaillement tels que le joint de mortier horizontal (adobe), le joint de reprise des banchées, les couches affaiblies par l'humidité, etc.

b) Rupture par flexion


Le mur se comporte comme une poutre cantilever en flexion composée latérale. La charge verticale a tendance de stabiliser les zones tendues menacées par la fissuration horizontale des murs (résistance à la traction perpendiculaire au plan des joins horizontaux est dépassée). Il y'a aussi risque d'écrasement de la maçonnerie par compression excessive due à l'effet combiné des sollicitations verticales et horizontales.

c) Rupture par cisaillement

Globalement les contraintes de cisaillement agissent horizontalement et verticalement pour que l'équilibre des moments soit satisfait.

Cependant au niveau local les contraintes de cisaillement ne peuvent être transmises que horizontalement pour les raisons suivantes:

- ✓ Les joints verticaux ne sont pas correctement remplis
- ✓ Le retrait du mortier du joint vertical réduit l'adhérence brique -mortier
- ✓ Les contraintes de compression latérales sont faibles et par conséquent le frottement est réduit.
- ✓ La surface de la brique en contact avec le joint vertical est généralement lisse.

Par conséquent les contraintes de cisaillement agissent localement au niveau du bloc ou de la brique comme indiqué ci-dessous. Cette distribution de cisaillement exige une distribution des contraintes de compression non uniforme pour satisfaire l'équilibre de la brique ou le bloc.

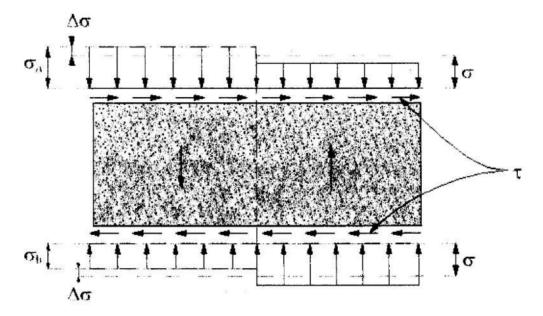


Fig.25. Effort au niveau de la brique d'adobe ou du bloc de pisé

Trois modes de rupture présentés dans la figure 24 peuvent se produire en fonction de l'importance des contraintes de compression verticales

- ✓ Faible contrainte de compression 6 : rupture au niveau de joint par perte de résistance au frottement (glissement au niveau des joints horizontaux)
- ✓ Grandes contraintes de compression : rupture des unités due aux contraintes principales de traction.
- ✓ Très grande contrainte de compression: rupture des unités par compression excessive due à
 6a.

4. Dimensionnement vis-à-vis du cisaillement des murs de contreventement

Les piliers en terre ne doivent pas être considérés pour reprendre les efforts sismiques.

Les actions agissantes sur un mur de contreventement sont indiquées dans la figure suivante.

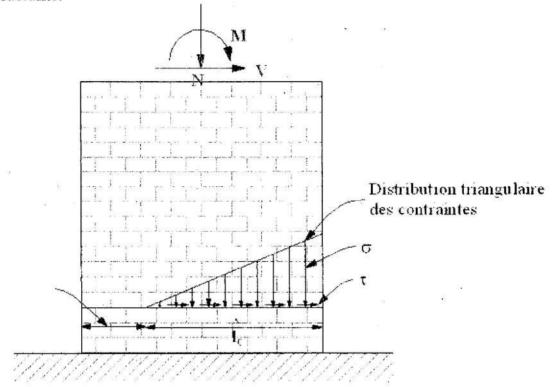


Fig.26. Mur en flexion composée (en plan)

La combinaison la plus défavorable de l'effort normal et l'effort tranchant est considérée, soit :

- L'effort normal maximal par unité de longueur du mur, en considérant l'excentricité longitudinale du mur en flexion cantilever.
- L'effort tranchant maximal dans le mur combiné à l'effort normal minimal concomitant
- L'effort de cisaillement maximal au niveau des jonctions du mur avec murs latéraux
- Résistance au cisaillement des murs en terre

La combinaison de charges à considérer vis-à-vis de la résistance au cisaillement est celle qui produit l'effort tranchant Maximal V^* et le minimum effort normal de compression N^* .

Critère de résistance au cisaillement des murs en terre

1 74.

L'effort tranchant ultime du mur soumis aux efforts sismiques horizontaux doit satisfaire les deux conditions suivantes :

$$V^* \le \phi [f_{es} A_m + k_v \sigma_{min} A_m]$$

et $V^* \le 5 \phi f_{es} A_h$

 $f_{\rm es}$: Résistance au cisaillement de la maçonnerie

 $\sigma_{\scriptscriptstyle{
m min}}$: Contrainte de compression due à l'effort normal minimal concomitant

A_{min}: Section résistante du mur

Ø : Coefficient partiel de sécurité sur le matériau.

Le facteur de cisaillement (k_v) est donné par :

 Cas d'un dispositif qui affaiblit le frottement de Coulomb au niveau des joints horizontaux de la maçonnerie

$$k_y = 0$$

Cas des lits horizontaux du mortier de jointement.

$$k_{v} = 0.30$$

Il faut noter que certains dispositifs de transfert de contraintes de cisaillement peuvent être incorporés dans les murs au niveau des jonctions et des lits de mortier, pour améliorer la capacité de résistance au cisaillement d'un mur en terre.

5. Dimensionnement vis-à-vis des actions transversales sismiques.

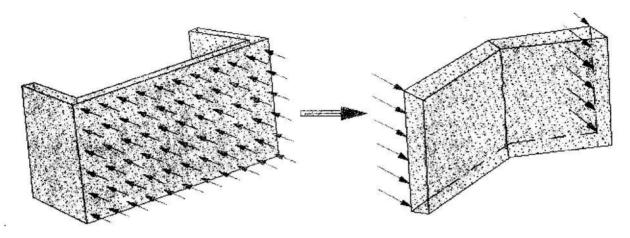
Les murs en plus des charges appliquées en plan, sont soumis aux actions transversales dues au vent ou au séisme. Le comportement d'un mur vis-à-vis de ces actions transversales est celui d'une plaque appuyée sur ses bords. Sa résistance latérale dépend de ses conditions d'appuis de sa géométrie et des résistances à la traction par flexion de la maçonnerie. Les réactions au niveau des appuis sont considérées uniformes le long de chaque appui. L'appui est assuré soit par le biais, d'attaches, de continuité de la maçonnerie en hauteur et en longueur, ou par des chaînages au niveau des planchers ou toitures.

Sous l'effet des charges latérales le mur subit une flexion verticale et une flexion latérale. En tenant compte des charges verticales appliquées au mur, ce dernier est en flexion composée verticale et en flexion simple latérale.

1. Flexion horizontale des murs

Le dimensionnement d'un mur en terre vis-à-vis de la flexion horizontale générée par les efforts transversaux du vent ou du séisme est fait selon le critère de résistance à la flexion horizontale suivant :

Le moment de flexion horizontale ultime maximale $(M_{_{\scriptscriptstyle H}})$ du aux actions transversales doit satisfaire la relation suivante :


$$M_{_{n}} \leq M_{_{rh}}$$

Où
$$M_{_{rh}} = 0.40 \phi f_{_{el}} Z_{_{n}}$$
 Pour un mur en adobe

 $M_{cb} = \phi f_{el} Z_u$ Pour un mur en pisé ou en bauge

 $Z_{..}$: Module latéral de la section brute du mur.

f. : Résistance à la traction par flexion du mur

 ϕ : Coefficient de sécurité partiel sur les matériaux;

Flexion latérale d'un mun soomis au séisme

Fig.27. Flexion'latérale d'un mur soumis au séisme

2 Flexion verticale des murs sous charges sismiques transversales

Le dimensionnement d'un mur vis-à-vis de la flexion verticale due aux actions transversales du séisme (hors plan du mur) est fait selon la méthode suivante :

La méthode consiste à calculer la réponse en accélération en fonction du déplacement du mur pour les différents états de contraintes de la section transversale à mi hauteur du mur, allant de l'état initial (sans application de charges transversales) jusqu'à l'état limite ultime.

A) Hypothèses de calcul

- La rupture du mur se produit par fissuration latérale à mi-hauteur du mur.
- Le mur est latéralement bloqué par ses attaches (tête et base), entre les chaînages supérieurs et inférieurs du mur en question et les planchers ou toiture.
- A l'état limite de résistance à la compression, le diagramme des contraintes est rectangulaire ayant pour valeur maximale 0.85 fc
- Pour des sollicitations inférieures à celle de l'état limite ultime, le diagramme des contraintes est linéaire
- Les réactions verticales en tête et à la base du mur sont centrées et appliquées au niveau du plan moyen du mur.
- Le schéma du modèle de calcul est présenté ci dessous.

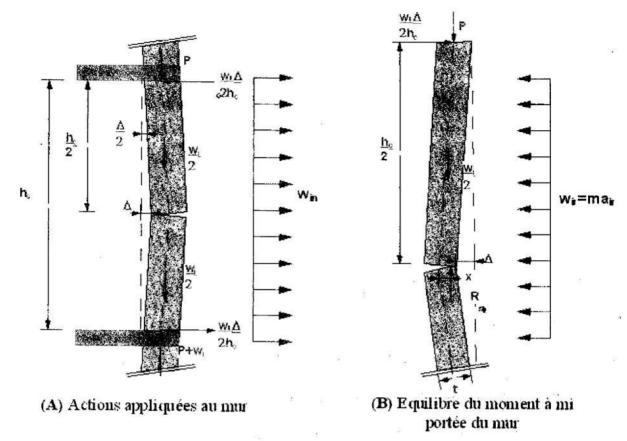


Fig.28. Schéma du modèle de calcul

B) Etapes à suivre :

- a) Les points de calcul de l'accélération en fonction du déplacement sont :
- b) Début de fissuration : contrainte de compression nulle à l'une des faces du mur, figure 29. A.
- c) La moitié de la section transversale fissurée (contrainte de compression nulle au niveau du plan moyen), figure 29.B.
- d) Les ¾ de la section transversale est fissurée, la contrainte de compression est nulle au ¾ de l'épaisseur du mur, figure 29.C.
- e) A l'état limite ultime, caractérisé par un diagramme de compression rectangulaire uniforme de contrainte ultime de compression $0.85\ f_{\rm e.}$, Figure 29. D
- f) Avant chargement (zéro déplacement et zéro accélération)

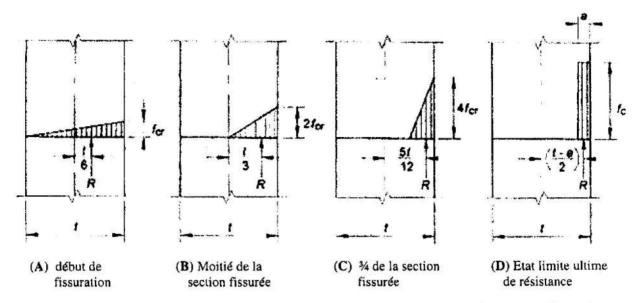


Fig. 29. Distribution des contraintes de compression pour différentes états de déformées

- a) Calcul de l'effort normal P appliqué en tête du mur en question ainsi que son poids propre W.
- b) Calcul de la réaction d'appui à mi hauteur

$$R = \left(1 - \frac{2}{3}C\right)\left(P + \frac{1}{2}W\right)$$
; C: Coefficient sismique

c) Calcul de l'accélération de fissuration du mur à mi hauteur

$$M_{cr} = \frac{Rt}{6} \text{ (kN.m/m)}$$

$$W_{cr} = \frac{8M_{cr}}{h^2} \text{ (kN/m)}$$

$$\Delta_{cr} = \frac{5}{384} \frac{W_{cr}h^4}{E_e I} \text{ (mm)}$$

Avec
$$I = \frac{t^3}{12}$$

L'accélération causant la fissuration sera donnée par :

$$\mathbf{a}_{cr} = \frac{8R}{h^2 \gamma t} \left(\frac{\mathbf{t}}{\mathbf{6}} - \Delta_{cr} \right) (\mathbf{g})$$

d) Calcul de l'accélération causant la fissuration à mi épaisseur du mur

$$M_{1/2} = 2M_{cr} \text{ (kN.m/m)}$$

$$W_{1/2} = \frac{16M_{cr}}{h^2}$$
 (kN/m)

$$\Delta_{1/2} = \frac{16M_{cr}}{h^2} \text{ (mm)}$$

$$\mathbf{a}_{1/2} = \frac{8R}{h^2 \gamma t} \left(\frac{t}{3} - \Delta_{1/2} \right)$$
 (g)

e) Calcul de l'accélération causant la fissuration au 34 de la section du mur

$$M_{3/4} = 2.5 M_{cr}$$
 (kN.m/m)

$$W_{3/4} = \frac{20M_{cr}}{h^2}$$
 (kN/m)

$$\Delta_{3/4} = 16\Delta_{cr} \ (\mathbf{mm})$$

$$\mathbf{a}_{3/4} = \frac{8R}{h^2 vt} \left(\frac{5t}{12} - \Delta_{3/4} \right)$$
 (g)

f) Calcul du Moment ultime

$$M_u = R\left(\frac{t}{2} - \frac{\mathbf{a}}{2}\right)$$
 (kN.m/m)

Avec

$$\mathbf{a} = \frac{R}{0.85 f_e} \, (\mathbf{kN/m})$$

$$W_{u} = 0$$

$$\Delta_u = \frac{t}{2} - \frac{\mathbf{a}}{\mathbf{2}} \quad (\mathbf{mm})$$

$$\mathbf{a}_{\nu} = 0$$

- g) Tracer la courbe $a = f(\Delta)$
- h) Calculer l'aire A_1 de la courbe tracée en unité (mm x g unité)
- i) Calculer la réponse en accélération qui induit la rupture du mur.

$$\mathbf{a}_e = \phi \sqrt{2k_{cr}A_1} \ (\mathbf{g})$$

$$\mathbf{k}_{cr} = \mathbf{a}_{cr} / \Delta_{cr}$$

Rigidité initiale du mur

3) Le critère de résistance du mur vis-à-vis de la flexion verticale due aux actions sismiques transversales est donné par :

$$\mathbf{a}_a > C$$

VIII. PRESCRIPTIONS GENERARALES

- 1. Configuration en plan et en élévation
 - La configuration en plan des constructions en terre doit présenter une forme simple et symétrique, voir figure 30-a. En cas de configuration en plan complexe, voir figure 30-b, il y'a nécessité de fractionner la construction en blocs adjacents symétriques et réguliers, séparés par des joints d'ouverture minimale de 5cm à partir du niveau de soubassement, voir figure 30-c. Ces joints étanchés sont remplis de matériaux très déformables de type paille ou équivalent permettant le déplacement horizontal en cas de secousse sismique.

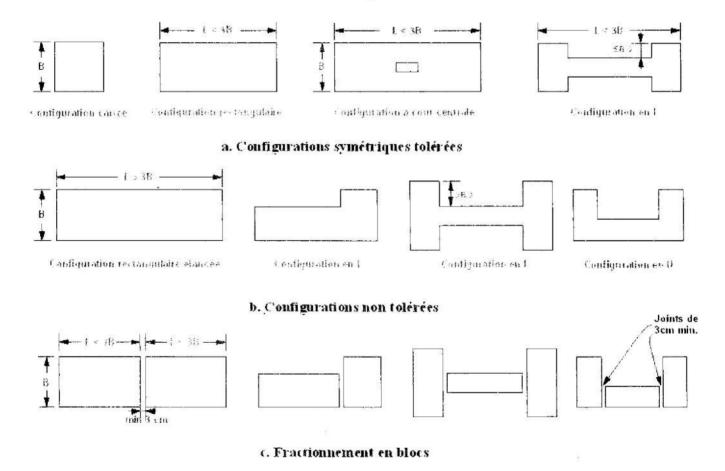
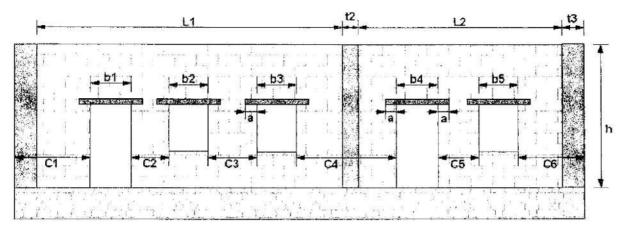


Fig.30. configuration en plan d'une construction en maçonnerie.

- La structure de contreventement doit être constituée d'un réseau de murs orthogonaux répartis de manière à réduire au maximum l'effet de la torsion. Un minimum de deux murs parallèles dans chaque direction. Les murs doivent être continus le long de la hauteur de la construction.
- Un chaînage en BA ou équivalent doit être placé au niveau de chaque plancher et toiture.


 La longueur de chaque mur est au moins 30% de la longueur parallèle de la construction

2. Sites d'implantation des constructions en terre

- Il faut s'assurer que le site d'implantation de la nouvelle construction n'est pas traversé par une faille reconnue active (mouvements différentiels en surface). Au cas ou une faille serait reconnue active il n'est pas permis ni de construire sur la faille ni dans une bande de 200m de largeur de part et d'autre de son tracé.
- Il n'est pas permis de construire sur un versant présentant un risque d'instabilité par glissement.
- Les constructions en terre sont recommandées sur des sites présentant des pentes maximales de 35% (inclinaison inférieure à 20°) qui ne présentent pas d'effet d'amplification topographique important.
- Les constructions en terre construites sur des sites présentant des pentes supérieures à 35% doivent être réalisées en blocs disposés en terrasses. Les constructions sur un site en pente, réalisée en un seul bloc ayant les fondations situées à différents niveaux ne sont pas tolérées dans les zones sismiques 4, 3 et 2.
- La construction en terre ne doit pas être fondée sur un sol sableux et lâche, sols argileux mou ou gonflants, sols meubles ou mal compactés, sols marécageux et instables
- Les constructions en terre ne doivent pas être érigées sur des sites exposés aux inondations, au glissement de terrain ou présentant des sols géologiquement instables.

3. Murs et ouvertures

- Epaisseur minimale des murs porteurs : 0,4 m
- Epaisseur minimale des murs cloisons : 20cm
- La largeur d'une ouverture ne doit pas être supérieure à 1,2 m (fenêtre ou porte)
- La distance entre un angle extérieur et une ouverture ne sera pas inférieure à 1.2 m
- La somme totale des largeurs des ouvertures d'un mur ne doit pas excéder 40% de la longueur totale du mur en zone sismique 1
- La longueur d'appui des linteaux (ancrage des linteaux) dans chaque coté de l'ouverture ne doit pas être inférieure à 50 cm
- la longueur du mur entre deux murs successifs qui lui sont orthogonal ne doit pas être supérieur à 10 fois l'épaisseur du mur ni supérieur à 64t²/h, avec h est la hauteur, t est l'épaisseur du mur.
- Une configuration adéquate est montrée sur la figure suivante :

 $a \ge 0,50 \text{ m}$, b1, b2, b3, b4, $b5 \le 1,2 \text{ m}$, C1, C2, C3, C4, C5, $C6 \ge 1,2 \text{ m}$

Fig.31: Taille est emplacement des ouvertures dans un mur en terre

Il est très recommandé d'utiliser une disposition symétrique des ouvertures dans un mur.

IX. TECHNIQUES DE RENFORCEMENT

Cette section définit les exigences générales minimales de renforcement des murs. En cas d'études spécifiques d'ingénierie, les types et détails de renforcement sont justifiés en utilisant les approches similaires à celles de la maçonnerie conventionnelle non armée.

Le renforcement a pour objectif d'améliorer la ductilité et la stabilité locale et globale de la construction en terre à travers un choix judicieux d'éléments et de dispositifs de renforcement. Ce renforcement concerne des jonctions des murs, les angles des ouvertures, les liaisons entre les murs et les planchers ou toitures, les liaisons entre les murs et fondations et les sections courantes des murs.

Il faut noter que le système de renforcement est conçu pour réduire le risque sismique des constructions en terre dus aux types de dommages décris à la section V.

Les types de renforcements les plus utilisés et les plus économiques, et qui ont été jugés performants lors des événements sismiques sont présentés ci-dessous, moyennant des adaptations aux typologies structurales et architecturales nationales. Les éléments de renforcement sont en bois, cannes, roseaux ou fibres végétales ou métalliques de type barre d'armature ou grillage en fils galvanisés, plastiques ou matériaux similaires.

L'adhérence et le scellement des éléments de renforcement sont choisis et conçus pour assurer le transfert d'efforts entre les éléments concernés.

Le tableau suivant définit le type et l'importance de renforcement en fonction des élancements géométriques $\left(\lambda = \frac{t}{h}\right)$ des murs :

Elancement du mur λ	Renforcements exigés
λ≤6	Chaînages
6< λ <8	chaînages + éléments de renforcement horizontaux et verticaux aux jonctions des murs.
8< λ <9	chaînages + éléments de renforcement horizontaux et verticaux dans tout le mur

Type de renforcement d'un mur en fonction de son élancement

Dans certains cas spéciaux, λ peut être supérieure à 9 mais doit être inférieure à 12, pourvu qu'une étude technique soit faite pour justifier les éléments de renforcement assurant la stabilité de la structure

9.1. Renforcement vertical

1) Contrefort

Lorsqu'un mur présente une grande longueur, il doit être impérativement renforcé par des raidisseurs verticaux pour respecter la portée maximale à ne pas dépasser entre appuis. Le renforcement par contrefort se prête bien pour les murs périphériques et les murs de clôture. L'appareillage des briques ou des banchées doit être bien réalisé pour que la jonction entre le contrefort et le mur soit monolithique. Voir figure 32.

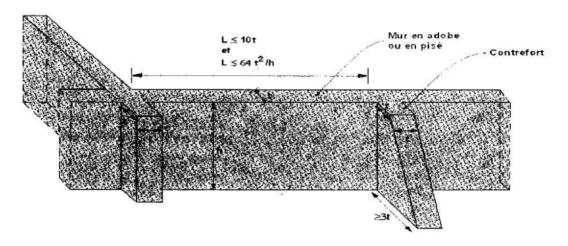


Fig.32. Longueur maximale d'un mur entre éléments de contreventement et/ou contrefort en terre

2) Raidisseur en béton armé, en maçonnerie ou en bois. Le contrefort en terre peut être remplacé par un raidisseur vertical en béton armé avec armatures latérales enrobées d'un mortier à ciment et noyées dans le mur en terre. Les armatures d'attaches horizontales sont espacées verticalement tous les 4 brique, pour un mur en adobe ou chaque banchée pour un mur en pisé. Le raidisseur vertical en béton armé peu être remplacé par une colonne réalisée en maçonnerie de briques de béton ou de pierres taillées et bien dressées. Cette colonne est noyée dans le mur avec des armatures latérales en acier disposées au niveau des lits de pose du mur en terre, et qui sont noyées dans un mortier à base de ciment.

Ces raidisseurs jouent le rôle de contreventement latéral des murs. La liaison en le raidisseur vertical et le mur doit être bien soignée. Ce raidisseur peut aussi être réalisé sous forme d'échelle verticale avec des bras latéraux en rondins de diamètre 10cm et de longueur minimale 80cm. Les rondins sont imprégnés d'une couche bitumineuse.

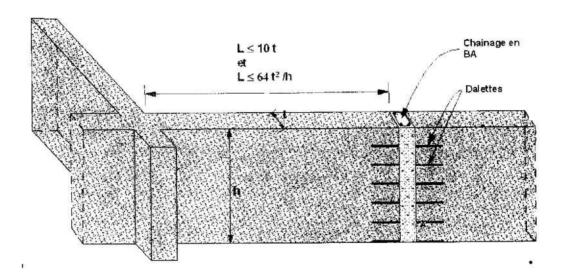
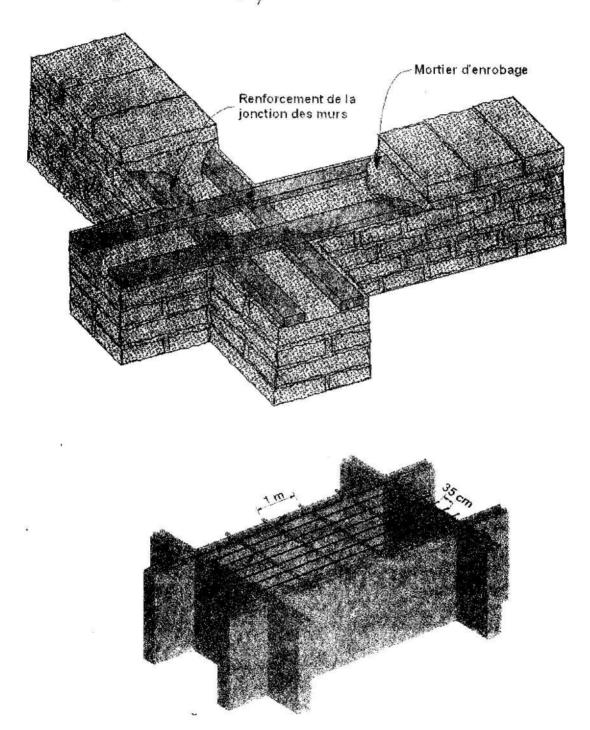


Fig.33. Raidisseur vertical en BA, maçonnerie conventionnelle ou en bois.


Caractéristiques minimales des raidisseurs verticaux des murs

- (a) Raidisseur vertical en béton armé (15cm x épaisseur du mur)
 - Armatures longitudinales 4T10
 - Armatures transversales T6 esp=15cm
 - Armatures latérales d'attaches T8 avec longueur de scellement 60cm de chaque coté du raidisseur
 - (b) Pilier en maçonnerie de briques pleines en béton ou en pierres taillées à mortiers de ciment ou de chaux (40cm x épaisseur du mur)
 - Armatures latérales d'attaches T8 avec longueur de scellement 60cm de chaque coté du pilier
- (c) Raidisseur en bois : Echelle en bois dont les montants sont des rondins de Diamètre 15cm; les éléments horizontaux sont des rondins de diamètre 10cm, espacés tous les 30cm.

9.2. Renforcement horizontal

1) Renforcement en bois

Le système de renforcement horizontal peut être soit des planches ou rondins en bois placées horizontalement dans le mur tous les 4 lits e briques d'adobe ou de tournée de bauge ou au niveau de chaque joint de banchée. Ces éléments doivent être bien attachés entre eux le long des murs et aux jonctions entre les murs et contreforts.

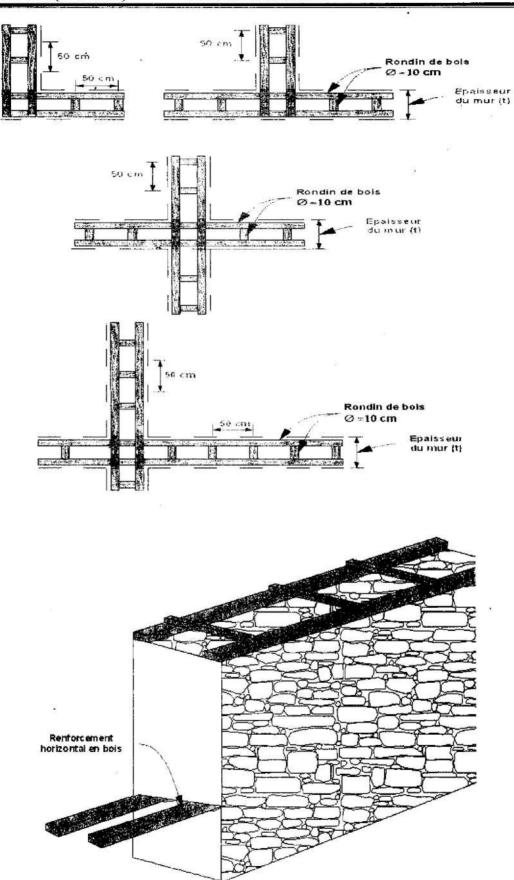


Fig.34. Renforcement horizontal

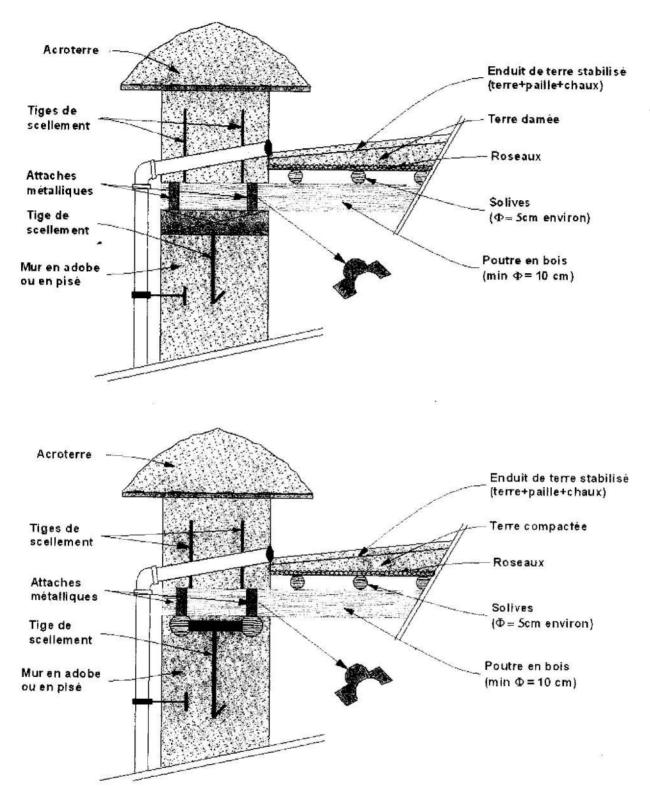


Fig. 35. Chaînage horizontal en bois ; Toiture traditionnelle et attaches mur – chaînage et plancher –chaînage

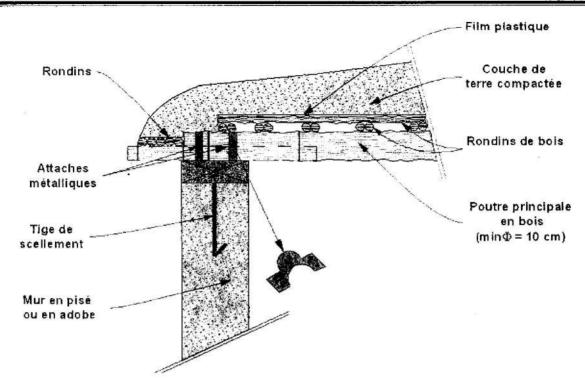


Fig. 36. Chaînage et dispositif d'attaches d'une toiture débordante

2) Renforcement en béton armé

Ce type de renforcement consiste à réaliser des chaînages horizontaux en béton armé similaires à celui de la maçonnerie classique. Ils doivent être bien liaisonnés aux murs pour assurer une compatibilité de déformation et éviter des déplacements horizontaux relatifs au niveau de l'interface entre le mur en terre et les chaînages.

Le chaînage au niveau du plancher et de la toiture est nécessaire et doit assurer une bonne liaison avec les murs porteurs et non porteurs

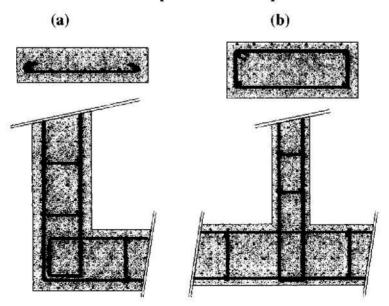
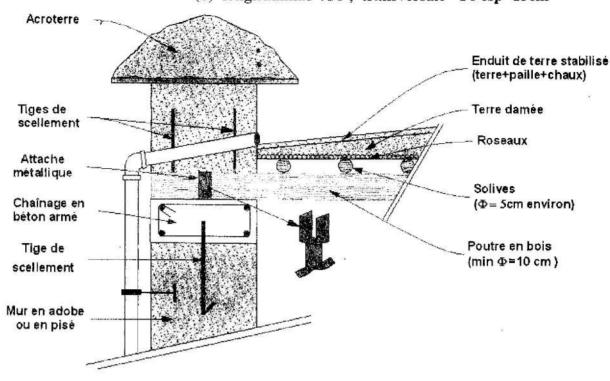



Fig.37. Chaînage horizontal en béton armé:

Armature minimale: (a) longitudinale 2T12; transversale T6 esp=15cm (b) longitudinale 4T8; transversale T6 esp=15cm

NB: Les tiges de scellement sont des armatures minimales T10 scellées dans le chaînage horizontal et de part et d'autre du mur, de longueur 40cm. Ces tiges sont espacées horizontalement tous les 50cm. Ces armatures doivent être traitées contre la corrosion ou noyées dans un mortier riche en ciment.

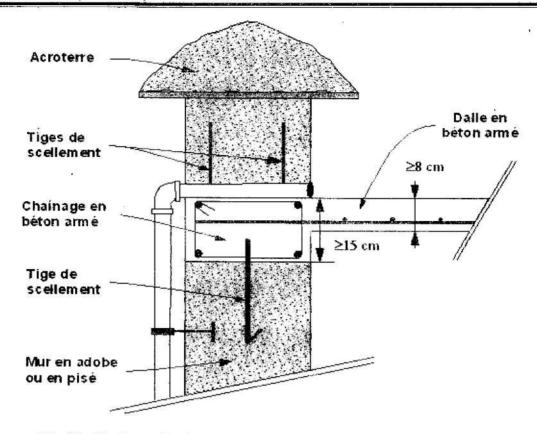


Fig.39. Chaînage horizontal en BA, toiture en BA attache mur - chaînage

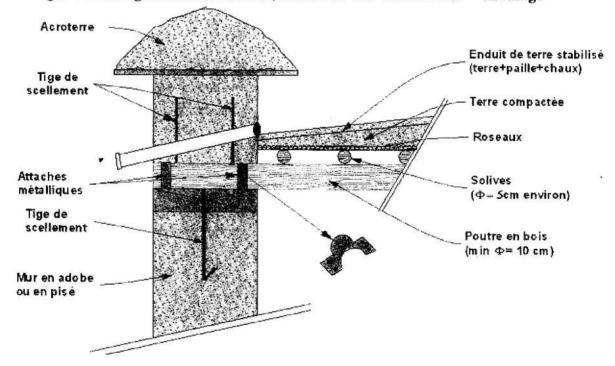


Fig.40. Chaînage horizontal en bois, toiture traditionnelle et attache mur - chaînage

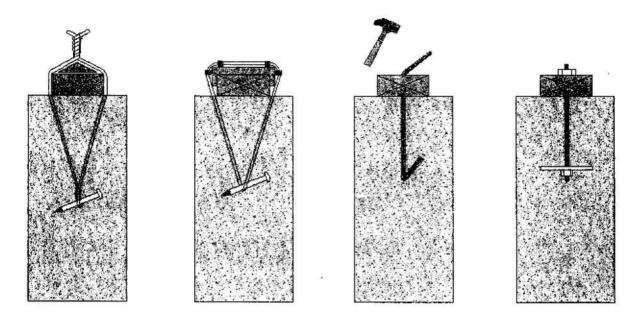
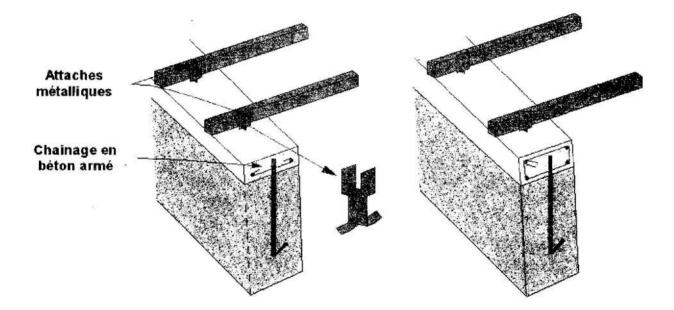



Fig.41. Types d'attaches du chaînage horizontal au mur

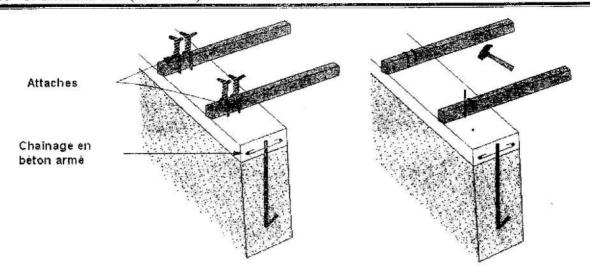


Fig.42. Attaches chaînages planchers

3) Renforcement horizontal en grillage

Ce type de renforcement est constitué d'un grillage en forme d'échelle en fils galvanisé de diamètre 3mm et de maille (15cm x épaisseur du mur) ou en plastique ayant une résistance à la traction similaire à celle des fils galvanisés. Il est disposé dans le plan du joint horizontal de la maçonnerie et noyé dans un mortier de ciment ou à base de la chaux; Il peut être utilisé à plusieurs niveaux du mur et plus particulièrement en tête du soubassement, en bas et en tête (linteaux) des ouvertures. Cette technique de renforcement est bien adaptée pour les constructions en pisé, en adobe et en bauge et plus particulièrement à la maçonnerie de pierres taillées ou semi taillées. Ce type de renforcement est facile à réaliser et à mettre en œuvre sur site. Il s'adapte à toutes les situations d'attaches et de jonctions des murs et d'encadrement des ouvertures.

Il présente aussi la facilité d'être léger et transporté facilement vers les lieux isolés.

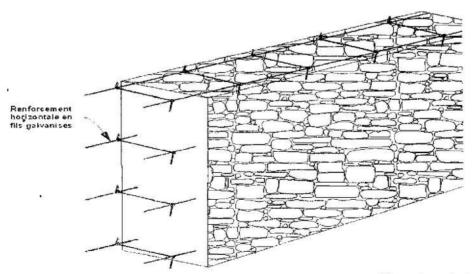


Fig. 43. Renforcement horizontal par grillage en fils galvanisés

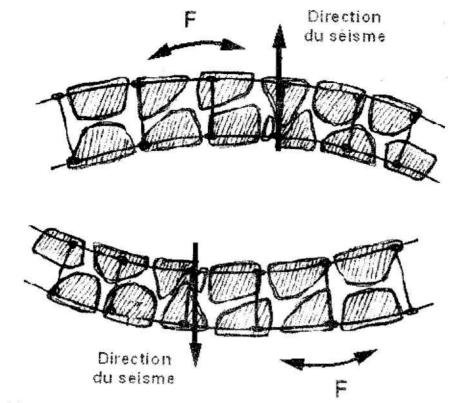


Fig.44. Renforcement horizontal par grillage métallique en fils galvanisés

4) Renforcement latéral par grillage

Ce renforcement consiste à réaliser un grillage métallique en fils galvanisé ou en matière plastique pour confiner le mur en terre sur ses deux faces latérales. Ces deux nappes du grillage sont interconnectées à travers les murs par des fils métalliques galvanisés. Les réservations de ces fils sont réalisées au moment de la construction du mur. Un enduit à base de terre stabilisée au ciment ou à la chaux est utilisé pour enrober les deux nappes de grillage. Ce type de renforcement améliore beaucoup la stabilité locale et globale du mur en terre ou en maçonnerie de pierres.

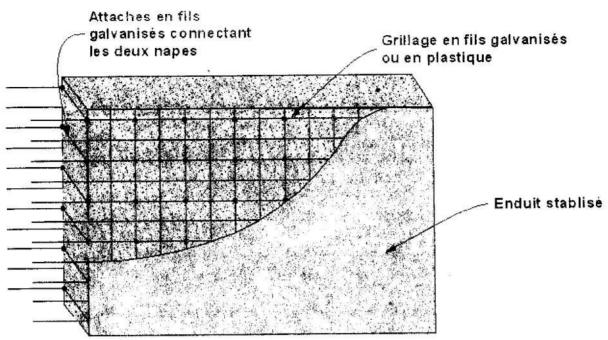


Fig.45. Renforcement latéral des murs par deux nappes en grillage

5) Renforcement des ouvertures

Les ouvertures dans les murs de maçonnerie en terre doivent être raidies par des raidisseurs le long de leurs porteurs par des éléments en bois ou en béton armé. Les raidisseurs verticaux doivent être prolongés jusqu'au chaînage de plancher ou toiture en Zones sismiques 4 et 3, voir figure 46.

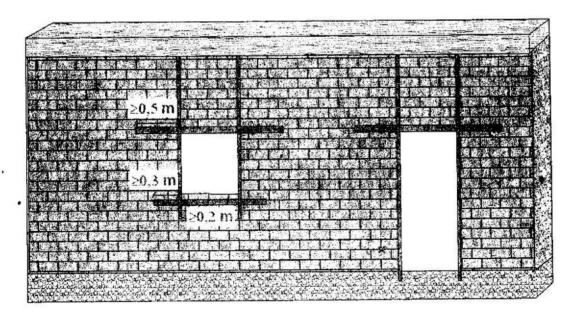


Fig. 46. Renforcement des ouvertures par des raidisseurs verticaux et horizontaux

X. FONDATIONS:

La fondation des murs en terre est constituée d'une semelle filante dont la géométrie dépend de la capacité portante des sols de fondations et des efforts statiques et sismiques qui lui sont transmis par les murs porteurs.

- Les fondations des murs doivent être en maçonnerie de pierres à mortier à base d'un liant hydraulique (chaux ou ciment) ou en béton cyclopéen, ou un chaînage en béton armé formant la semelle d'un mur en maçonnerie de pierres ou en briques pleine en béton, voir figures 47, 48, 49 et 50
- Les exigences minimales des semelles filantes des murs sont décrites comme suit :
- La largeur des semelles filantes des murs doit répondre aux conditions suivantes :
 - ✓ Egale à l'épaisseur des murs dans le cas d'une construction à un seul niveau fondée sur un sol ferme (contrainte admissible supérieure à 2 bars)
 - ✓ Egale à 1.5 fois l'épaisseur des murs dans le cas d'une construction à deux niveaux fondée sur un sol ferme
 - ✓ Egale à 1.5 fois l'épaisseur des murs dans le cas d'une construction à un niveau fondée sur un sol moyennement ferme (contrainte admissible entre 1.5 et 2 bars)
 - ✓ Egale à 2 fois l'épaisseur des murs dans le cas d'une construction à deux niveaux fondée sur un sol moyennement ferme (contrainte admissible entre 1.5 et 2 bars)
- La profondeur de la fondation enterrée doit être 80cm au minimum dans le cas d'un sol non rocheux.
- La maçonnerie de soubassement est en pierres à mortier de chaux ou de ciment ou en béton cyclopéen ou en briques de béton pleines est réalisée au dessus des fondations enterrées sur une hauteur de 0.3m dans le cas d'une région sèche, et 0.6m dans le cas d'une région à pluviométrie moyenne ou forte.

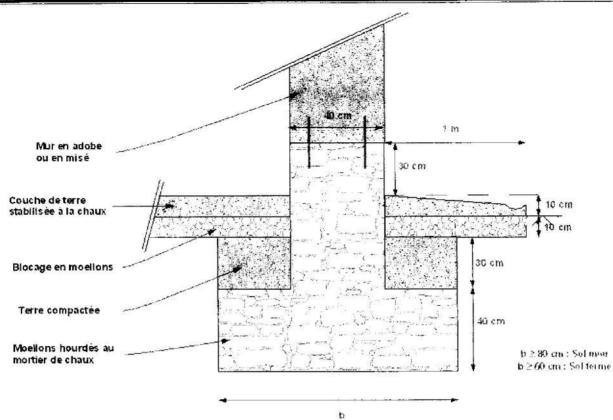


Fig.47. Fondation en maçonnerie de moellons (tiges d'attaches mur-soubassement)

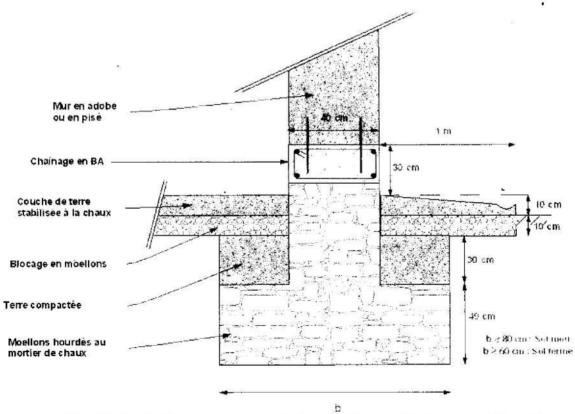


Fig.48. Fondation en maçonnerie de moellons + Chaînage en BA + Tiges d'attaches mur-Chaînage

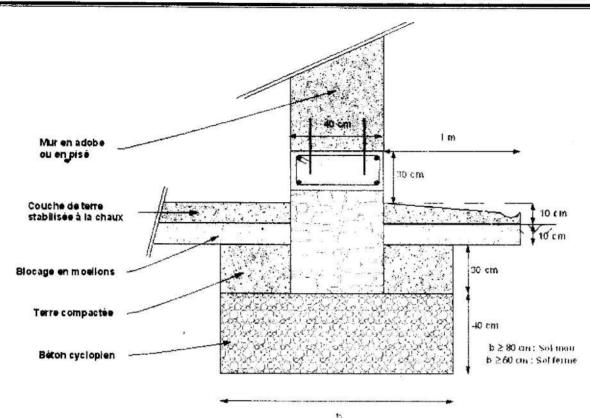


Fig.49. Fondation en béton cyclopéen + Chaînage en BA + Tiges d'attaches

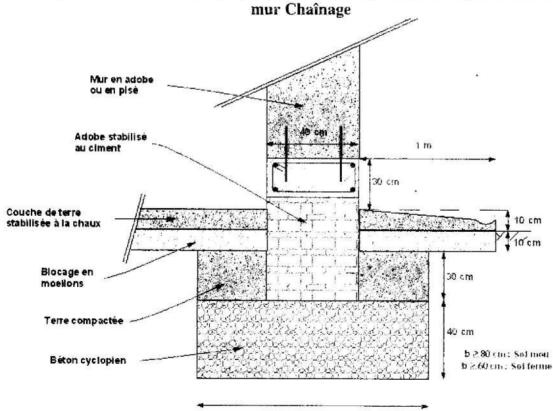


Fig.50. Fondation en béton cyclopéen + Chaînage en BA + Tiges d'attaches mur Chaînage

XII. ACTIONS DE L'EAU

L'action de l'eau constitue la principale cause de dégradation et d'affaiblissement de la capacité résistante des structures en terre. Il est donc nécessaire de les protéger par :

- Des enduits résistant aux effets de l'eau (murs, soubassements, toitures, acrotères)
- Des fondations qui empêchent tout contact des murs porteurs avec l'eau
- Toitures plates à pente minimale de 1 à 2%
- Etanchéité adéquate des toitures
- Des trottoirs périphériques
- Des toitures débordantes
- Un système de drainage approprié.

REGLEMENT PARASISMIQUE POUR L'AUTO-CONSTRUCTION EN TERRE RPACTERRE 2011

1. Avant propos

Le Maroc est caractérisé par une grande diversité architecturale, et des cultures constructives dont la richesse est notoirement reconnue, et qui représentent un atout de taille dans son attraction touristique. Au-delà de sa valeur purement économique, cette diversité architecturale représente l'identité plurielle du Royaume, et un patrimoine culturel qu'il est impératif de préserver. Cette architecture vernaculaire qui fait recours aux matériaux locaux (terre, pierre, bois, etc.) n'est pas seulement d'une grande qualité esthétique, elle présente également une remarquable adaptation aux conditions climatiques, et se présente ainsi comme une « architecture verte » de qualité.

Cependant, on ne peut pas ignorer les besoins manifestes de changement visibles partout dans les espaces construits, et qui se concrétisent autant dans le recours aux matériaux conventionnels de construction, que dans la création d'espaces de vie différents de ceux hérités du passé. Que ce soit au niveau des typologies de l'habitat ou de celui des morphologies des villages et des villes, la recherche de nouvelles formes montre le besoin de changement et le rejet de la reproduction à l'identique du passé.

Pour éviter tout conservatisme stérile et contreproductif, et accommoder cette recherche de formes et d'espacès nouveaux, l'élaboration du présent règlement s'est attachée à faire la distinction entre les notions de typologie architecturale, et celle de système constructif; distinction empruntée à la tradition anglo-saxonne et dont le développement est liée à la culture parasismique.

L'objectif du présent règlement est donc, non pas de figer le développement des typologies architecturales traditionnelles, mais de développer la culture constructive nationale et ses systèmes constructifs en leur intégrant les techniques qui leur conféreront la performance sismique requise pour éviter les effets désastreux des séismes à venir.

2. Matériaux et systèmes

2.1 Domaine d'application

Les matériaux couverts par ce règlement sont: adobe, adobe stabilisé, bloc comprimé, pisé, torchis, bauge, pierre et mortier de terre.

2.2 Composition des terres utilisables

Les terres utilisables pour la construction de bâtiments en terre devront être pures de toutes matières organiques et être composées comme suit: 10–20% argile, 15–25% silice, 55–70% sable. Elles ne doivent pas comporter de cailloux de dimension supérieure à 5mm pour l'adobe et supérieure à 20 mm pour le pisé. Pour l'adobe et le mortier en terre un ajout de paille est recommandé.

2.3 Mortiers

Les mortiers devront avoir la même composition que l'adobe, mais ne doivent pas contenir de cailloux. Ils peuvent être stabilisés avec de la chaux. De manière générale la teneur en eau du mortier est supérieure à celle du mélange servant à la fabrication de l'adobe. Par conséquent on devra y ajouter de la paille afin d'éviter les effets de retrait dus à l'ajout d'eau.

2.4 Enduits

Les bâtiments construits en terre non stabilisée doivent recevoir un enduit comme mesure de protection contre les effets de l'érosion et de l'humidité. Dans les régions de pluviométrie modérée et élevée (> 150 mm par an) l'enduit doit être stabilisé à la chaux et à la paille. L'enduit devra être appliqué en deux couches successives : la première sera d'environ 20 mm d'épaisseur et pourra contenir de la paille, et la seconde sera inférieure à 5 mm et ne contiendra pas de paille. Il est recommande de finir l'enduit avec un badigeon à la chaux.

2.5 Matériaux pour l'amélioration de la performance parasismique

Les matériaux pouvant être utilisées pour l'amélioration de la performance parasismique des bâtiments en terre non stabilisée sont: le bois, le bambou, le roseau sec ou peint, et les polymères. Les matériaux compatibles avec le matériau terre peuvent être utilisés en chaînage. Le béton, s'il est utilisé, devra être arme avec des barres d'acier.

2.6 Qualités des matériaux

De manière générale les matériaux utilisés ne devront présenter aucune fissure ou défaut.

2.7 Essais et contrôle de qualité

Le pisé et l'adobe ne doivent présenter aucune fissure, et ne contenir aucun matériau étranger, graines ou racines végétales, ou tout autre défaut pouvant diminuer leur durabilité. Les essais de terrain pour déterminer les bonnes terres et la qualité des adobes sont définis ci-après.

2.7.1 Essais pour l'adobe

Essai de résistance à sec

L'essai suivant peut être utilisé pour tester la qualité d'une terre pour la construction : fabriquer 5 ou 6 petites boules de 2 cm de diamètre, et les laisser sécher pendant 48 heures. Une fois sèches les boules seront soumises, une à une, à un essai d'écrasement à la main, entre le pouce et l'indexe. Si aucune des boules ne s'écrase, la terre contient suffisamment d'argile et peut être utilisée pour la fabrication d'adobe à condition que les essais de contrôle des fissures décrits ci-dessous soient menés.

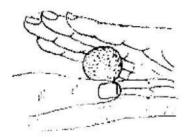


Figure nº 1: Essai d'écrasement

Examen de l'odeur

Le sol contenant de la matière organique dégage une odeur de moisi qui est amplifiée si on l'humidifie ou on le chauffe. Un bon sol ne doit pas contenir des matières organiques sauf s'il est stabilisé à la chaux.

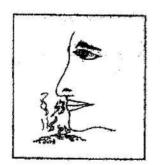


Figure nº 2 : Test d'odeur

Essai au ruban

La terre est acceptable si on obtient un rouleau de 3 mm de diamètre et de 5 à 10 cm de long à partir d'un échantillon de terre humidifiée.

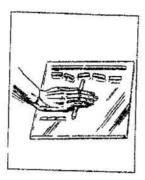


Figure nº 3: Essai au ruban

Essai de contrôle des fissures

On réalisera au moins huit (8) prismes de deux adobes avec des mélanges de terre et de sable différents pour chacun des prismes. Les proportions (terre / sable) de ces mélanges varieront entre 1dose de terre pour 0 de sable et 1 dose de terre pour 3 de sable. Il faut donc huit mélanges différents, et au moins seize unités d'adobe. Pour chaque prisme la composition du mortier est identique à celle des deux adobes. Apres 48 heures de séchage on procèdera à la séparation des deux adobes composant les dits prismes. Le prisme contenant le moindre apport en sable et dont le mortier ne révèlera pas de fissures indique la composition la meilleure pour la fabrication des adobes.

Essai de résistance de l'adobe

La résistance de l'adobe peut être vérifiée comme suit: après quatre (4) semaines de séchage au soleil, l'adobe doit être suffisamment solide pour supporter en flexion le poids d'une personne de 60-70 kg. Si l'adobe se casse, il faudra ajouter plus d'argile et de fibres végétales (paille) dans la composition du matériau.

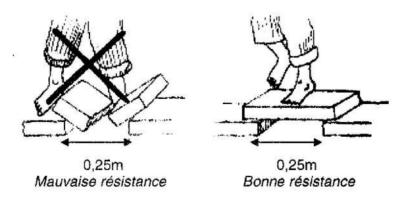


Figure nº 4 : Essai de résistance de l'adobe

2.7.2 Essai pour le pisé

Il est recommandé de recourir aux tests traditionnels locaux. Pour la construction en pisé la terre doit être humidifiée pendant une durée variant de trois (3) à dix (10) jours. On attendra qu'elle soit correctement fermentée pour commencer à la travailler dans les formes de banche (al-louh). Il est impératif de ne pas laisser la terre ainsi fermentée en attente, la mise en œuvre doit commencer sans délai, sinon la terre risque de perdre toutes les qualités requises pour le pisé.

Pour donner au pisé la meilleure résistance possible la terre devra être suffisamment compactée. L'essai de compactage est comme suit: chaque jour en fin de journée les formes de banche de la dernière banchée seront laissées sur place et attachées, et celle-ci sera submergée d'eau. Si le lendemain matin l'eau recouvre toujours la banchée avec les formes, le pisé est bon, et la construction peut reprendre. Mais si le pisé a absorbé l'eau, cela veut dire qu'il n'a pas été correctement compacté, et en conséquence la dernière banchée doit être détruite et refaite à neuf. Il convient d'indiquer que dans certaines régions du Maroc les règles de l'art indiquent que le compactage des terres requiert jusqu'à quarante (40) coups de dame pour chaque Guffa (environ 10 kg) de terre.

3. Prescriptions

3.1 Limites d'application

Les bâtiments d'habitation en terre seront limités en hauteur à un seul niveau dans la zone 4 et 3, ou zone à haut risque sismique.

Les bâtiments d'habitation en terre seront limités en hauteur à deux niveaux dans les zones sismiques 2, 1 et 0.

Il est interdit de construire des bâtiments en terre sur des sols mous, expansifs, marécageux, inondables, à risque de glissement, en présence de nappe phréatique superficielle, ou à moins de deux km de distance de failles géologiques actives connues.

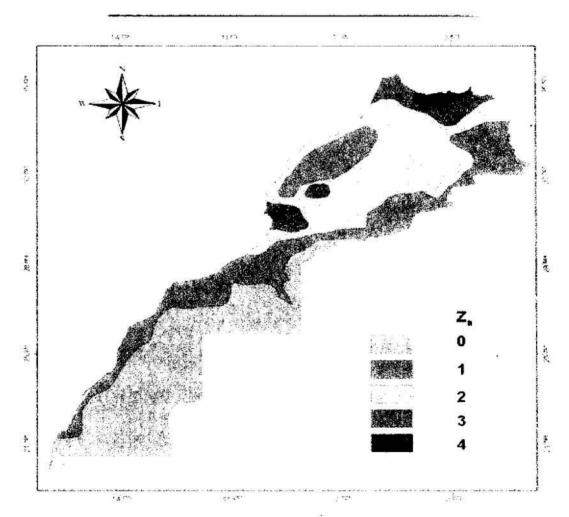
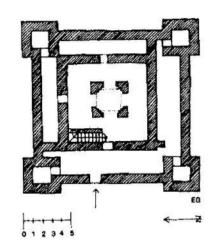
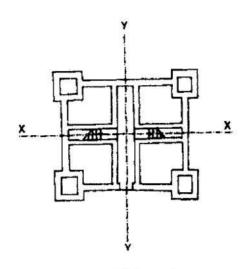
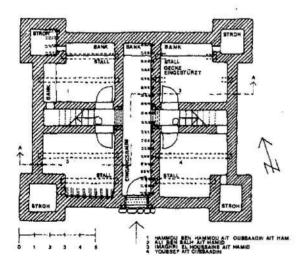
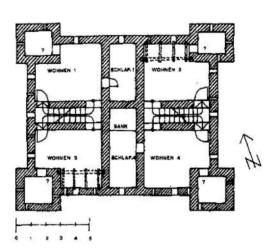




Figure n° 5: Carte de zonage sismique du Maroc


3.2 Géométrie


Il est recommandé d'adopter des plans d'architecture aussi symétriques que possible.

Tighremt Hamed N'ait Souss

Tighremt N'ait Hamid (Ait El Arbi)

Figure n° 6: Modèles traditionnels symétriques

La configuration en plan des constructions en terre doit présenter une forme simple et symétrique, voir figure a. En cas de configuration en plan complexe, voir figure b, il y'a nécessité de fractionner la construction en blocs adjacents symétriques et réguliers, séparés par des joints d'ouverture minimale de 5cm à partir du niveau de soubassement, voir figure c. Ces joints étanchés sont remplis de matériaux très déformables de type paille ou équivalent permettant le déplacement horizontal en cas de secousse sismique.

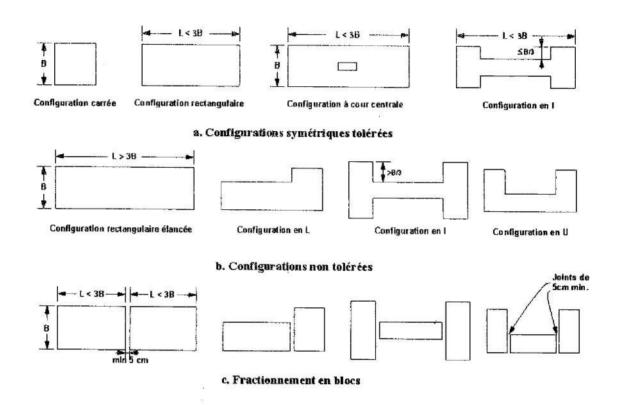


Figure n° 7: configuration en plan

3.3 Elancement des murs

Les murs porteurs doivent avoir une épaisseur minimum de 40 cm.

Les murs non porteurs construits en adobe doivent avoir une épaisseur minimum de 20 cm.

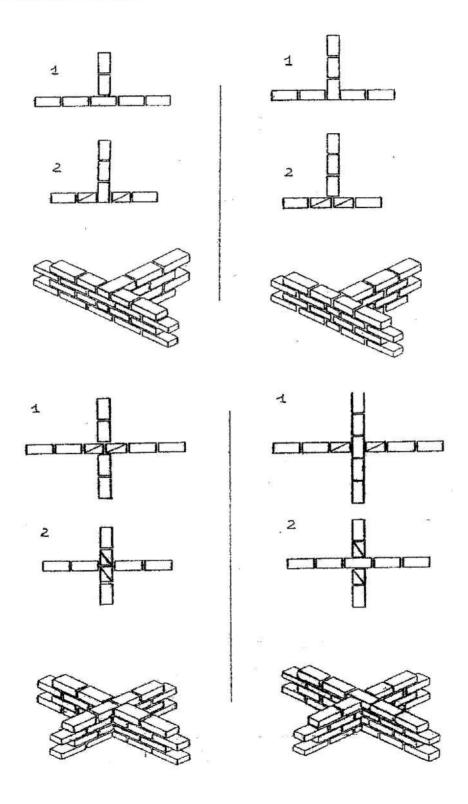
Les murs non porteurs doivent être contreventés par des murs perpendiculaires avec un espacement ne dépassent pas 12 fois l'épaisseur du mur non porteur.

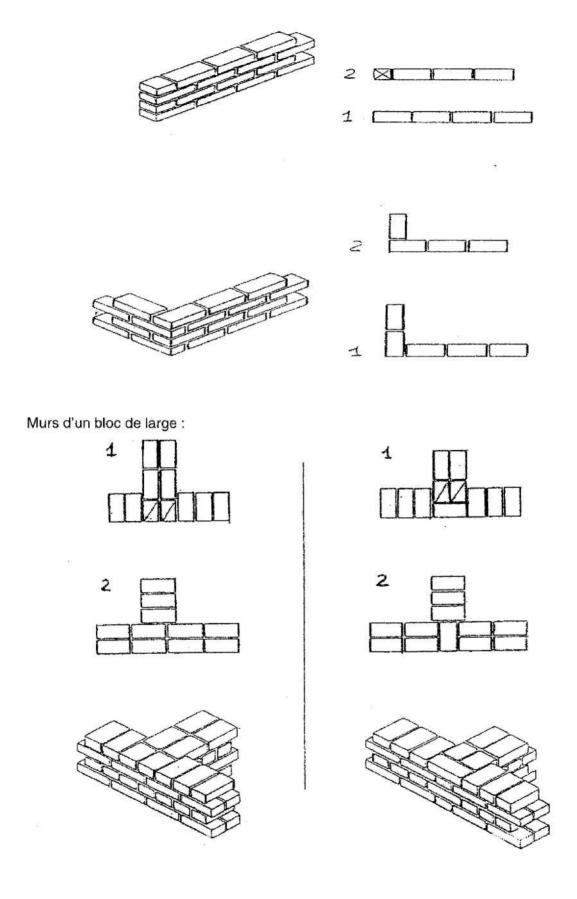
Les murs non porteurs doivent être liaisonnés à la structure porteuse.

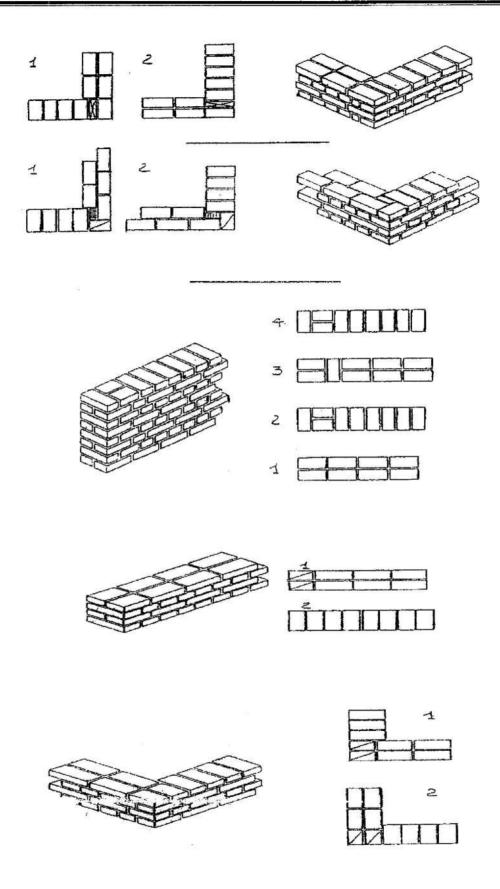
L'élancement (rapport hauteur sur épaisseur) des murs porteurs doit être \leq 6 pour les constructions d'un niveau. Les constructions de deux niveaux doivent avoir un élancement h/t \leq 5 pour le premier niveau, et h/t \leq 6 pour le deuxième niveau.

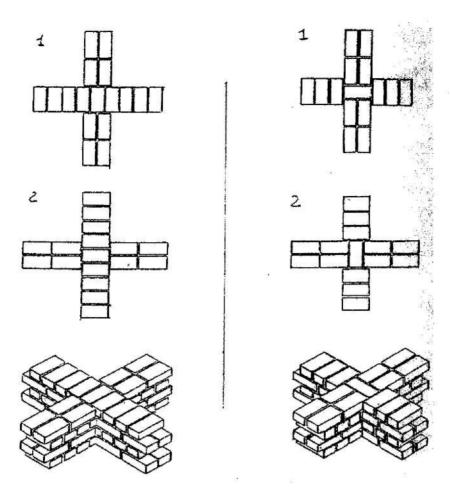
3.4 Appareillage pour adobe et pisé

Les règles de l'art en matière de joints de maçonnerie doivent être respectées pour la construction en terre, que ce soit pour l'adobe ou le pisé. Cela implique que:

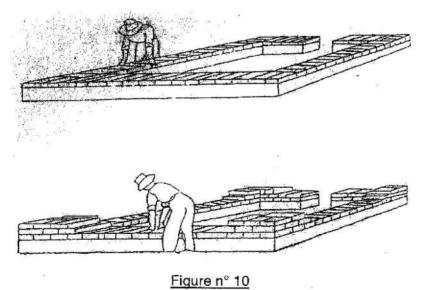

- Tous les lits d'adobe et banchées de pisé doivent être parfaitement horizontaux,
- Les joints verticaux pour l'adobe et le pisé doivent se recouvrir de manière à éviter le coup de sabre, et doivent être bien remplies de mortier,
- Les joints entre murs perpendiculaires doivent être faits de manière à éviter le coup de sabre, ou un joint linéaire continu.


En L	
	Premier lit
	Deuxième lit
En T	Premier lit
75	Deuxième lit
	Premier lit
En X	
	Deuxième lit


Figure nº 8: Appareillage


Figure n° 9 : Appareillages de base avec des blocs parallélépipédiques

Murs d'un demi-bloc de large :



Assurer une montée uniforme du mur sur toute sa longueur, les angles sont les premiers à monter

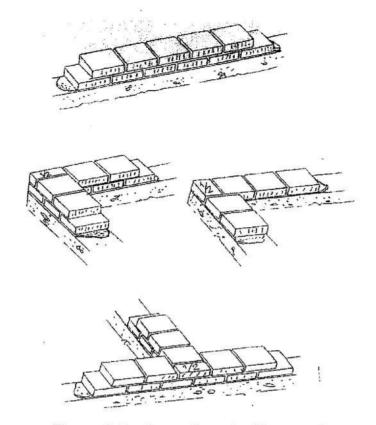


Figure nº 11 : Appareillage des blocs carrés

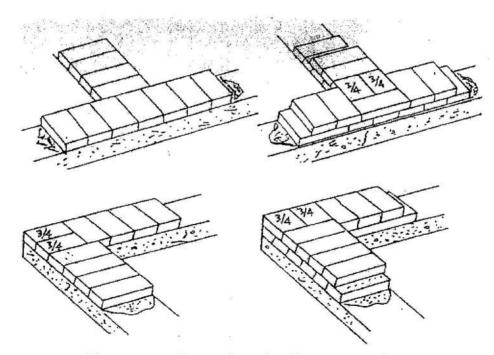


Figure n° 12 : Appareillage des blocs rectangulaires

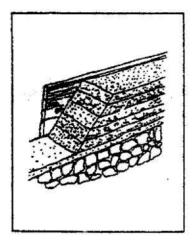


Figure n° 13 : Compactage par couche de terre

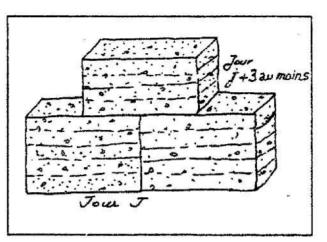
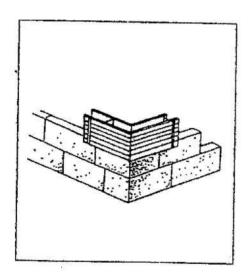



Figure nº 14: Avancement des travaux

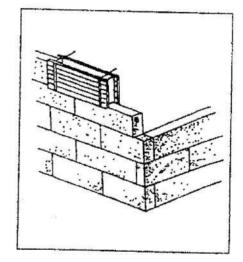


Figure nº 15 : Maçonnerie au niveau des angles

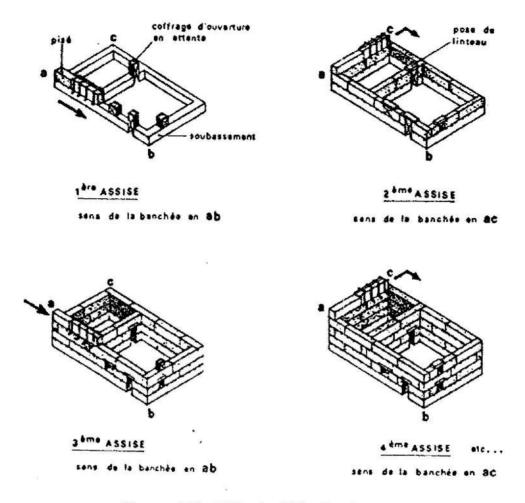


Figure n° 16: Méthode d'élévation des murs



Figure n° 17: Traitement des angles

3.5 Chaînages et diaphragmes

Les chaînages sont obligatoires au niveau de la toiture et au niveau de l'étage. Les chaînages peuvent être en bois, ou en béton armé, ou tout autre matériau équivalent. Les chaînages seront ancrés aux murs et à la toiture.

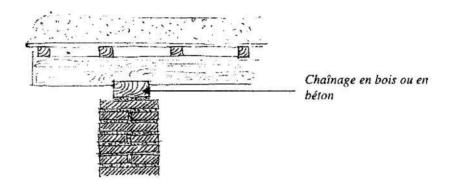


Figure nº 18 : Chaînages en bois ou béton

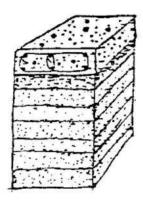


Figure nº 19 : Exemple de solution pour le chaînage horizontal en béton armé

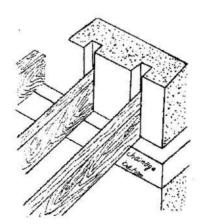


Figure n° 20 : Encastrement des poutres en bois dans un mur en pisé

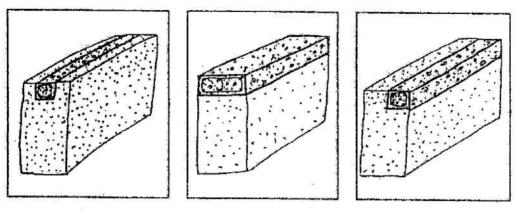
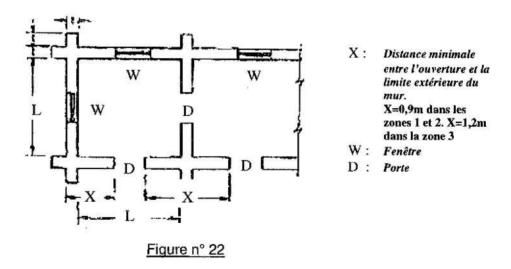



Figure n° 21 : Divers types de dispositions de chaînages

3.6 Murs de contreventement

La distance entre murs de contreventement des murs extérieurs, porteurs et non porteurs sera inférieure à 12 fois l'épaisseur du mur contreventé. En aucun cas cette distance ne pourra excéder 5 m de long. Pour les murs de plus grande longueur des contreforts seront ajoutés pour respecter cette règle.

3.7 Ouvertures et linteaux

Les ouvertures (portes et fenêtres) doivent être de préférence de taille réduite, et centrées dans les murs.

Les ouvertures doivent être placées à une distance minimale de 1,2 m de la limite extérieure du mur dans la zone 3, et de 0,9 m dans les zones 1 et 2.

La distance minimale entre deux ouvertures ne peut être inférieure à 1,2 m.

La somme des superficies de toutes les ouvertures d'un mur ne peut être supérieure au tiers (1/3) de la superficie totale de ce mur.

Les linteaux auront un appui de 30 cm minimum de chaque coté de l'ouverture, mais la longueur de cet appui ne peut être inférieure au 1/5 de la largeur de l'ouverture.

Les linteaux composés de 'plusieurs éléments devront avoir des attaches liant ces éléments entre eux et avec le chaînage qui est au-dessus. La distance entre deux attaches ne peut être inférieure à 50 cm.

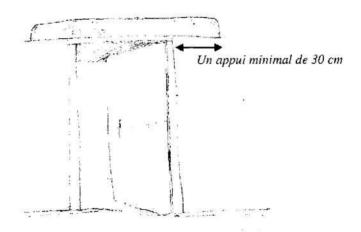
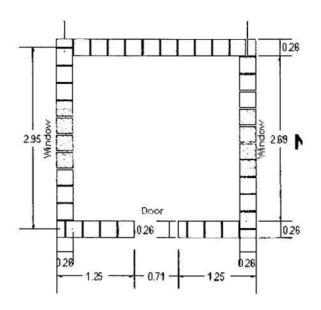
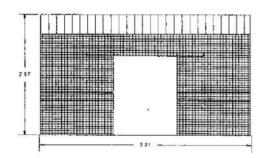
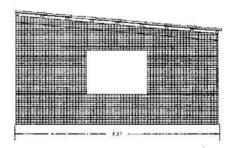


Figure nº 23 : Appui de linteaux


3.8 Techniques parasismiques


Zone 2, 1 et 0 : un chaînage est obligatoire.


Zone 4 et 3: au chaînage il est obligatoire d'ajouter un renforcement en forme de grillage appliqué au mur. Ce grillage sera fait de matériaux naturels, tels le bambou, ou les cordes de fibres naturelles, ou de matériaux artificiels, tels les polymères et fibres synthétiques. Ce grillage sera appliqué des deux côtés du mur avec des attaches traversantes de manière à continuer le mur. Ces attaches seront faites avec le même matériau que le grillage (polymère ou cordage en fibres naturelles).

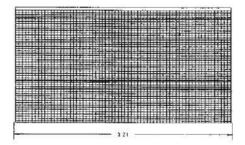

L'espacement maximum entre les éléments de renforcements verticaux et entre les éléments horizontaux est de 30 cm.

Figure n° 24 : Schéma d'application des grillages polymères (plan et élévations)

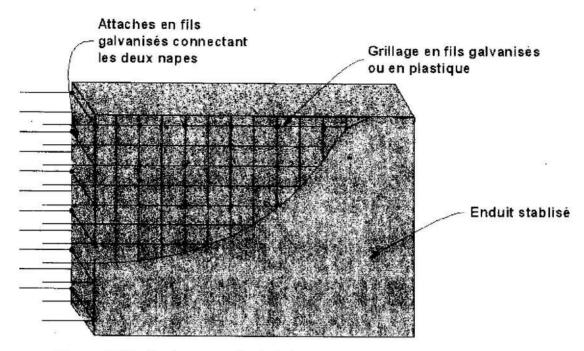


Figure n° 25 : Renforcement latéral des murs par deux nappes en grillage

3.9 Toitures, débords de toiture et protection contre l'érosion

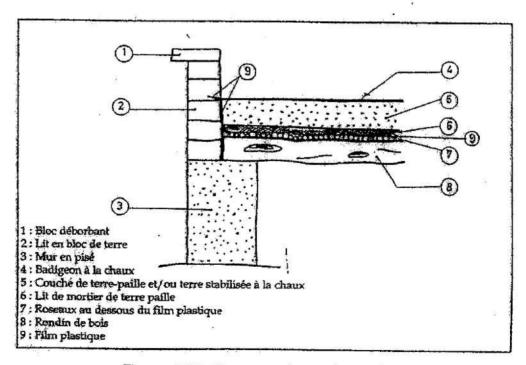


Figure nº 26 : Coupe au niveau d'une toiture

Les débords de toiture sont obligatoires comme protection des murs contre la pluie. Ces débords doivent être en bois, briques cuites, pierre, roseau, bambou, ou tout autre matériau étanche. La longueur du débord est définie selon le climat de la région et la pluviométrie annuelle dans le tableau suivant.

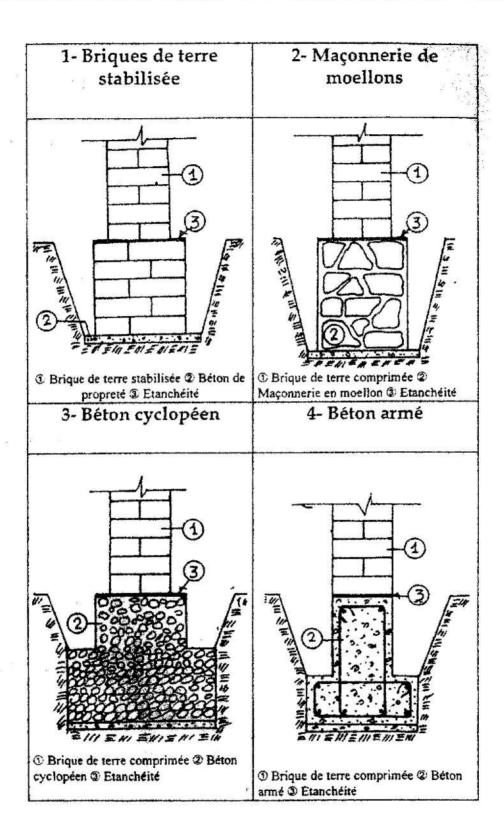
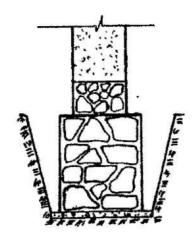
Climat de la région (pluviométrie annuelle)	Longueur Minimale du débord 10 cm	
Sec (jusqu'à 150 mm par an)		
Modéré (entre 150 et 400 mm par an)	30 cm	
Humide (> 400 mm par an)	40 cm	

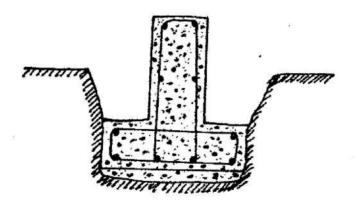
3.10 Fondations et dallages

Les fondations auront une largeur supérieure à celle des murs. Elles auront une profondeur minimale de 80 cm, excepté sur les sols rocheux. Dans les régions où de fortes précipitations occasionnelles peuvent causer des inondations éclaires, comme dans les vallées présahariennes du sud les fondations devront être élevées au dessus du niveau du sol extérieur d'une hauteur minimale de 50 cm. Dans toutes les autres régions le haut de la fondation doit avoir une hauteur minimale de 20 cm par rapport au niveau du sol extérieur.

Les fondations doivent être en maçonnerie, ou en béton armé.

Pour les trottoirs périphériques un système approprié de drainage devra compléter le système de protection contre les dégâts d'eau avec une pente minimale de 3%.



Figure nº 27: Matériaux utilisés en fondations (BTC)

a- Fondation en maçonnerie de moellons

b- Fondation en béton cylopéen

c- Fondation en massif de béton armé

Figure nº 28 : Exemples de fondations (Pisé)

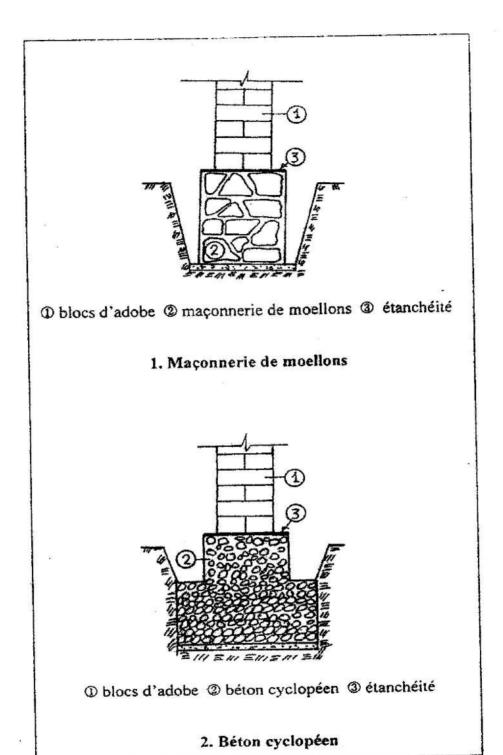


Figure n° 29 : Différents types de fondations (Adobe)

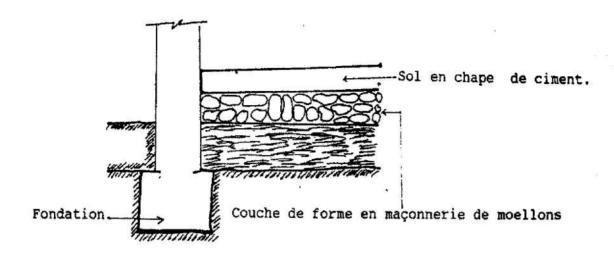


Figure n° 30 : Détail constructif d'un pavement en matériaux locaux

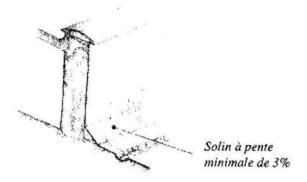


Figure n° 31 : Protection des bases de murs

BIBLIOGRAPHIE SOMMAIRE

Proceedings of the Getty Seismic Adobe Project 2006 Colloquium available on line http://www.getty.edu/conservation/publications/pdf_publications/gsap.html.

International Association of Earthquake Engineering, (EERI). World Housing Encyclopedia Report. Oakland, California: EERI. On-line at: //www.world-housing.net/Contribute/Contribute.asp

Secretary of the Interior. 1995. The Secretary of the Interior's Standards for the Treatment of Historic properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings. Washington DC.: US Department of the Interior, National Park Service, Preservation Assistance division.

Bariola J, Vargas J, Torrealva D, Ottazzi G. 1988. Earthquake Resistant Provisions for Adobe Construction in Peru. 9th World Conference on Earthquake Engineering. Tokyo-Kyoto, Japan.

Bariola, Juan 2005 [Peru] Seismic Analysis of Adobe Structures

Blondet, Marcial, Vargas, Julio and Tarque, Nicola 2005 [Peru] Building Codes for Earthen Buildings in Seismic Areas

Blondet, Marcial, Torrealva, Daniel, Villa Garcia, Gladys, Ginocchio, Francisco and Madueño, Ivonne 2005 [Peru] Using Industrial Materials for the Construction of Safe Adobe Houses in Seismic Areas

Blondet M, Ginocchio F, Marsh C, Ottazzi G, Villa García G, Yep J. 1988. Shaking Table Test of Improved Adobe Masonry Houses. 9th World Conference on Earthquake Engineering. Tokyo-Kyoto, Japan.

Blondet M, Madueño I, Torrealva D, Villa García G, Ginocchio F. 2004. Reinforced of Adobe Constructions with Industrial Elements: Preliminary Study. Technical Report. In Spanish. Report to Research Office of the Catholic University of Peru (in process). Lima, Peru.CERESIS 1999.

Huynh, Thanh-Hue, Meyer, Patrick, and Ostertag, Claudia 2005 [USA] Burlap Reinforcement for Improved Toughness of Low-Cost Adobe Residential Structures

Iyer, Sreemathi, and Schierle, G.G. 2005 [India] Bamboo Masonry Reinforcement for Earthquake Resistance

Morris, Hugh 2005 [New Zealand] Seismic Research on Earth Building related to the 1998 New Zealand Earth Building Standards

Scawthorn C. 1986. Strengthening of Low-Strength Masonry Buildings: Analytical and Shaking Table Test Results. Proceedings of Middle East and Mediterranean Regional Conference on Earthen and Low-Strength Masonry Buildings in Seismic Areas. Ankara, Turkey

Technical Manual for Reinforcement of Existing Adobe Houses in the Coastal and Highlands Regions of Peru. In Spanish. CERESIS/GTZ/PUCP Joint Project. Available from: http://www.ceresis.org/proyect/madobe/manual.htm

Tolles E.L. Krawinkler H. 1986. Performance Evaluation of Adobe Houses Through Small-Scale Model Tests on Shake Tables. 1981 Proceedings of Middle East and Mediterranean Regional Conference on Earthen and Low-Strength Masonry Buildings in Seismic Areas. Ankara, Turkey

Tolles Leroy, E. et al. 1996. Survey of Damage to Historic Adobe Buildings after the January 1994 Northridge Earthquake. The Getty Conservation Institute, Los Angeles: GCI Scientific Program Reports

Tolles E. L. Kimbro E. Ginell W. 2000. Planning and Engineering Guidelines for Seismic Retrofitting of Historic Adobe Structures. The Getty Conservation Institute Los Angeles California USA.

Tolles, E.L., Kimbro, E.E., Webster, F.A., and Ginell, W.S. 2000 [USA] Seismic Stabilization of Historic Adobe Structures: Final Report of the Getty Seismic Adobe Project

Torrealva D. 1985. Post-Disaster Housing Reconstruction and Economic Development in Peru. International Symposium on Housing and Urban Development After Natural Disasters. Miami, Florida, United States.

Torrealva D. 1986. A Field and Laboratory Tested Technique for Retrofitting Adobe Houses. Proceedings of Middle East and Mediterranean Regional Conference on Earthen and Low-Strength Masonry Buildings in Seismic Areas. Ankara, Turkey

Vargas, J. 1978. Recommendations for Design and Constructions of Adobe Houses. Experimental Study. In Spanish. International Symposium 4 February 1976 Earthquake, and the Reconstructions Process. Guatemala.

Zegarra L, Quiun D, San Bartolomé A, Giesecke A. 1997. Reinforcement of Existing Adobe Dwellings 1st part: Seismic Test of Walls "U". In Spanish. XI National Congress of civil Engineer. Trujillo, Peru.

Zegarra L, Quiun D, San Bartolomé A, Giesecke A. 1997. Reinforcement of Existing Adobe Dwellings 2nd part: Seismic Test of Modules. In Spanish. XI National Congress of civil Engineer. Trujillo, Peru.

Zegarra L, Quiun D, San Bartolomé A, Giesecke A. 2001. Behavior of Reinforced Adobe Dwellings in Moquegua, Tacna and Arica during the 23-06-2001Earthquake. In Spanish. XIII National Congress of civil Engineer. Puno, Peru.

Vargas Neumann J. Ottazzi G. 1981.Research on Adobe Publication Di- 81-01 in Spanish. Departamento de Ingeniería. Pontificia Universidad Católica del Perú

Vargas Neumann J. Bariola J. Blondet M. Mehta P. 1984. Seismic Strength of Adobe Masonry. Research Project financed by USA-AID in Spanish Publication DI-84-01 Departamento de Ingeniería. Pontificia Universidad Católica del Perú

Walker, Peter 2003 [UK] Review of Structural Design Procedures for Earth Buildings

NM

Description sommaire des Règlements Internationaux

ASTM
Un document concis et très général qui décrit les différents systèmes de construction en terre, essentiellement pour les réintroduire dans le monde « développé » dans le contexte du développement durable et de l'efficacité énergétique. (6 pages)

ARIZ Directives normatives applicables aux structures en terre, tantôt générales tantôt très spécifiques, pour Pima County (une zone à faible risque sismique). (15 pages)

Un guide très détaillé et bien illustré des concepts de construction et d'ingénierie des bâtiments en terre en général, et des systèmes prédominants en particulier. Ce guide n'a pas fait l'objet d'une adoption formelle par Standards Australia, pas plus qu'il n'a été rédigé sous le format d'une norme, mais SA est le sponsor principal et le co-auteur (avec Peter Walker) de ce texte. (152 pages)

Directives normatives et critères conceptuels (de remise à niveau) applicables à l'adobe, à la taille de pierre et d'autres structures en « matériaux historiques ou archaïques » (zones à risque sismique élevé). (3 pages)

IBC Directives normatives et résistance minimum des structures en adobe. (3 pages)

Directives normatives et détails sur l'adobe, le torchis, le pisé et l'Assam (clayonnage et torchis), (zones à risque sismique faible à élevé). (12 pages)

NEP Directives normatives et détails applicables exclusivement aux structures en pierre de taille avec mortier en ciment et/ou en terre (zones à risque sismique élevé). (22 pages)

Directives normatives et détails applicables à l'adobe, aux blocs de terre comprimée et au pisé (zones à risque sismique modéré). (30 pages)

NZ97 Méthodologie applicable à la conception technique des structures en terre, dérivée pour l'essentiel des procédures de maçonnerie et de construction en béton et ajustée en fonction de l'expérience historique et des tests réalisés sur les bâtiments en terre. (56 pages)

NZ98 Directives très détaillées et bien illustrées pour la sélection des matériaux, leur stabilisation, leur test et le contrôle de la qualité de la construction (essais en laboratoire et sur le terrain). (81 pages)

NZ99 Directives normatives très détaillées et bien illustrées applicables à l'adobe, à l'adobe stabilisé, aux blocs de terre comprimée, au pisé, au torchis et à la terre coulée (zones à risque sismique modéré à élevé). (121 pages)

PEROU Directives normatives applicables aux structures en adobe, accompagnées de quelques directives techniques concernant les zones à risque sismique modéré à élevé. (21 pages)

Décret n° 2-12-682 du 17 rejeb 1434 (28 mai 2013) modifiant le décret n° 2-02-177 du 9 hija 1422 (22 février 2002) approuvant le règlement de construction parasismique (R.P.S 2000) applicable aux bâtiments, fixant les règles parasismiques et instituant le Comité national du génie parasismique.

LE CHEF DU GOUVERNEMENT,

Vu le décret n° 2-02-177 du 9 hija 1422 (22 février 2002) approuvant le règlement de construction parasismique (R.P.S 2000) applicable aux bâtiments fixant les règles parasismiques et instituant le Comité national du génie parasismique, tel qu'il a été modifié;

Sur proposition du ministre de l'habitat, de l'urbanisme et de la politique de la ville ;

Après avis du ministre de l'intérieur et du ministre de l'équipement et du transport ;

Après délibération en conseil de gouvernement, réuni le 12 rejeb 1434 (23 mai 2013),

DÉCRÈTE :

ARTICLE PREMIER. – Les dispositions des articles premier, 2, 4 et 5 du décret précité n° 2-02-177 sont modifiées comme suit :

- « Article premier. Est approuvé tel qu'il est annexé au « présent décret, le règlement de construction parasismique, « dénommé « R.P.S 2000, version 2011 », applicable aux bâtiments, « fixant les règles parasismiques auxquelles doivent satisfaire « les constructions dans l'intérêt de la sécurité. »
- « Article 2. Pour l'application du règlement de « construction parasismique « R.P.S 2000, version 2011 » applicable « aux bâtiments :

«1	;
« 2 –	,
« La répartition ci-aprè	

- « Le classement des constructions et sa modification sont « prononcés par arrêté conjoint des autorités visées à l'alinéa qui « précède, pris après avis du Comité national du génie « parasismique.
- « Ledit classement des constructions est établi selon les « critères édictés par le «R.P.S 2000, version 2011». »

TITRE II

DU COMITE NATIONAL DU GENIE PARASISMIQUE	
« Article 4 Il est créécharg	é:
« - de proposer	ique de ènes
« Article 5. – Ce comité ci-ap	rès :
« – l'autorité de l'urbanisme	1
« –	;
« – les représentants des départements ch « de l'habitat.	arge

« Le président du Comité national du génie parasismique « peut s'adjoindre toute personne qui peut contribuer et enrichir « les réflexions et travaux initiés par le comité national du génie « parasismique.

« Le secrétariat du Comité national du génie parasismique « est assuré par l'autorité gouvernementale chargée de « l'habitat. »

ART. 2. – Le ministre de l'intérieur, le ministre de l'habitat, de l'urbanisme et de la politique de la ville et le ministre de l'équipement et du transport sont chargés, chacun en ce qui le concerne, de l'exécution du présent décret qui entrera en vigueur six (6) mois après sa publication au Bulletin officiel.

Fait à Rabat, le 17 rejeb 1434 (28 mai 2013).

ABDEL-ILAH BENKIRAN.

Pour contreseing:

Le ministre de l'intérieur.

MOHAND LAENSER.

Le ministre de l'habitat, de l'urbanisme et de la politique de la ville,

MCHAMMED NABIL BENABDALLAH.

Le ministre de l'équipement et du transport,

AZIZ RABBAH.

REGLEMENT DE CONSTRUCTION PARASISMIQUE (RPS 2000, Version 2011)

Avant-Propos

Le Règlement de Construction Parasismique (RPS 2000) a été approuvé par le **décret n° 2-02-177 du 9 hija 1422 (22 février 2002**. Il a pour objectif de limiter les dommages en vies humaines et matériel susceptibles de survenir suite à des tremblements de terre.

Il définit ainsi la méthode de l'évaluation de l'action sismique sur les bâtiments à prendre en compte dans le calcul des structures et décrit les critères de conception et les dispositions techniques à adopter pour permettre à ces bâtiments de résister aux secousses sismiques.

Ce règlement est appelé à être révisé périodiquement pour tenir compte des progrès scientifiques dans le domaine du génie parasismique. Aujourd'hui, et avec un retour d'expérience de 10 ans, le RPS 2000 a nécessité une révision, dans un cadre partenarial entre le Ministère de l'Habitat, de l'Urbanisme et de la Politique de la Ville et l'Université Mohammed V-Agdal de Rabat, pour faciliter son application.

ANNEXE

Règlement de construction parasismique (RPS 2000, Version 2011)

CHAPITRE I

OBJET ET DOMAINE D'APPLICATION

1.1- OBJET DU REGLEMENT

L'objet du présent Règlement de Construction Parasismique « RPS 2000, version 2011 » est de :

- a) Définir l'action sismique sur les bâtiments ordinaires et les structures de comportement similaire, au cours des tremblements de terre.
- b) Présenter un recueil d'exigences minimales de conception et de calcul ainsi que des dispositions constructives à adopter pour permettre aux bâtiments ordinaires de résister convenablement aux secousses sismiques, conformément aux objectifs indiqués au 2.1.

Par ailleurs, au cas où les sollicitations dues au séisme sont moins importantes que celles issues des effets du vent, ce sont ces dernières qui sont à prendre en considération.

Commentaire 1.1

Ces exigences et dispositions techniques sont complémentaires aux règles générales utilisées dans la construction, et ne s'appliquent pas dans les zones de sismicité négligeable.

En plus de ces exigences, il convient de prendre en considération des mesures spécifiques pour éviter des effets induits par le séisme, tels que les incendies, le glissement de terrain, liquéfaction...

1.2- DOMAINE D'APPLICATION

Le présent règlement s'applique aux constructions nouvelles, aux bâtiments existants subissant des modifications importantes, tels que :

- le changement d'usage ;
- · la construction d'un ajout.

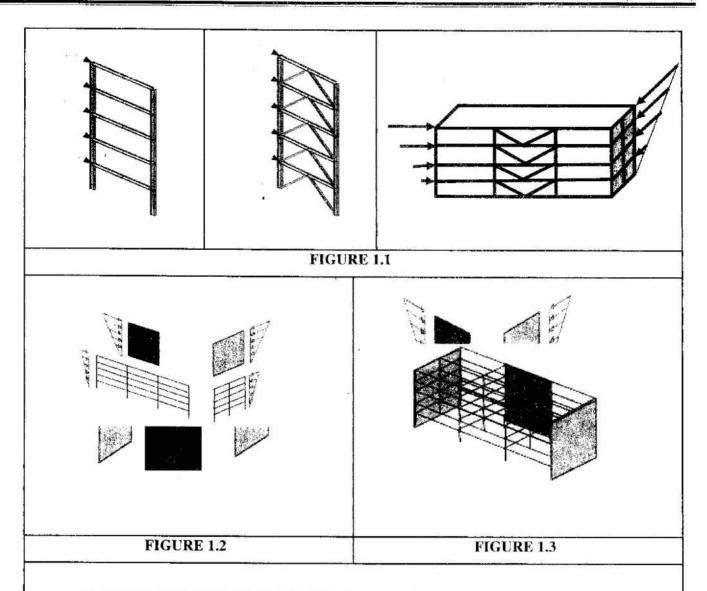
Le domaine d'application du présent règlement couvre les bâtiments et les structures de comportement similaire, tels que les réservoirs élevés en béton armé ou en acier et dont le système de résistance aux forces sismiques horizontales est assuré par l'un des trois systèmes structuraux suivants:

1.2.1- SYSTÈME DE PORTIQUES

Il s'agit d'une ossature composée de poteaux et poutres à nœuds rigides ou d'une charpente contreventée, capable de résister aussi bien aux charges verticales qu'aux charges horizontales(Figure: 1.1).

1.2.2- SYSTÈME DE VOILES

Le système est constitué de plusieurs murs isolés ou couplés, destinés à résister aux forces verticales et horizontales. Les murs couplés sont reliés entre eux par des linteaux régulièrement espacés et adéquatement renforcés (Figure : 1.2).


1.2.3- SYSTÈME MIXTE

C'est le système structural composé de portiques et de voiles. La résistance aux efforts sismiques est assurée par les voiles et les portiques, proportionnellement à leurs rigidités respectives (Figure: 1.3).

Le domaine d'application du règlement ne s'étend donc pas à toutes les catégories de constructions. Sont exclus de ce domaine :

- Les constructions dont les conséquences d'un dommage, même léger, peuvent être très graves : centrales nucléaires, usines chimiques ;
- Les ouvrages enterrés et ouvrages d'art : tunnels, barrages ;
- Les ouvrages réalisés par des matériaux ou des systèmes non couverts par les normes en vigueur.

Pour les structures non couvertes par le présent règlement, des exigences spécifiques, complémentaires, sont à prendre en considération. L'analyse de ces structures fait appel à des méthodes dynamiques plus appropriées, basées sur des modèles mathématiques qui reproduisent le mieux possible les différents paramètres intervenant dans la réponse sismique de la structure.

LES TROIS TYPES DE STRUCTURES COUVERTES PAR LE « RPS 2000, VERSION 2011 »

CHAPITRE II

OBJECTIFS ET PHILOSOPHIE DU CALCUL SISMIQUE

2.1- OBJECTIFS DU REGLEMENT

Dans les zones à risque sismique, les objectifs essentiels du «Règlement de Construction Parasismique (RPS 2000, version 2011) » consistent à assurer :

- a) la sécurité du public pendant un tremblement de terre ;
- b) la protection des biens matériels;
- c) la continuité de la fonctionnalité des services de base.

Les objectifs visés sont à atteindre pour des événements sismiques ayant des probabilités de dépassement adéquates.

2.1.1- SECURITE DU PUBLIC

Pour assurer un degré de sécurité acceptable aux vies humaines, pendant et après un séisme, il est demandé que l'ensemble de la construction et tous ses éléments structuraux, ne présentent vis à vis des forces sismiques de calcul qu'une probabilité assez faible d'effondrement ou de dommages structuraux importants pendant la durée de vie utile du bâtiment.

2.1.2- PROTECTION DES BIENS MATERIELS.

Il est demandé que sous l'action d'un séisme, le bâtiment dans son ensemble et tous ses éléments structuraux et non structuraux soient protégés d'une manière raisonnable contre l'apparition des dommages d'une part, et contre la limitation de l'usage pour lequel le bâtiment est prévu d'autre part. Ce degré minimal de protection et de sécurité sera assuré par le respect des critères et des règles prescrites par le présent règlement.

2.1.3 FONCTIONNALITÉ DES SERVICES DE BASE

Pour les bâtiments à usage ordinaire, leur protection contre les dommages est évaluée par l'importance des déplacements latéraux inter étages.

Quant aux autres bâtiments tels que les hôpitaux et les laboratoires, leur fonctionnalité peut être affectée par l'endommagement des équipements installés dans ces bâtiments, ou par des déplacements relatifs de certains éléments non structuraux. Il est donc recommandé de prévoir des ancrages pour les équipements mécaniques et électriques pour supporter les actions locales auxquelles ils peuvent être soumis. Ces ancrages, laissés à l'appréciation de l'ingénieur, doivent être conçus de manière à empêcher le glissement ou le renversement des équipements.

2.2- PERFORMANCE REQUISE

Conformément aux objectifs du règlement, une structure ordinaire doit avoir un niveau de

performance adéquat vis à vis de l'action sismique. Le niveau de performance exprime le degré admissible de dommages pour une structure sous l'action d'un séisme donné. Le niveau de séisme visé correspond à une probabilité de dépassement sur 50 ans, durée de vie utile de la structure (en principe 10%, ce qui correspond à une période de retour de 475ans).

Le niveau de performance sismique requis pour une structure en zone sismique, dépend de l'importance de l'intensité du séisme dans la zone en question et des conséquences socio-économiques qui résulteraient des dommages subis par la structure. On distingue trois niveaux de performance sismique.

2.2.1- Performance sismique niveau I (PS1)

Sous un séisme de faible intensité, les dommages sont négligeables et la fonctionnalité de la structure n'est pas affectée aussi bien pendant qu'après le séisme.

2.2.2- Performance sismique niveau II (PS2)

Sous un séisme modéré, les dommages subis par la structure sont économiquement réparables mais aucun renforcement n'est exigé. La fonctionnalité de la structure est peu affectée, mais elle peut être rétablie peu de temps après le séisme.

2.2.3- Performance sismique niveau III (PS 3)

Sous un séisme violent, les dommages structuraux sont importants mais sans causer d'effondrement. La fonctionnalité de la structure n'est plus assurée.

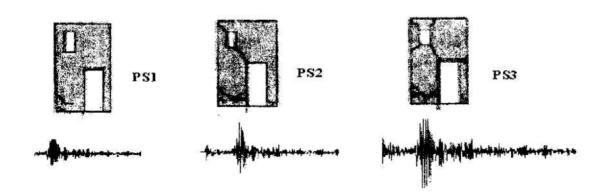


Figure: 2.1

Force

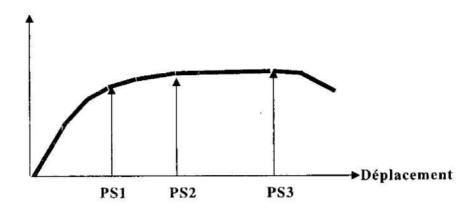


Figure 2.2: Niveaux de performance

2.3- PHILOSOPHIE ET PRINCIPE DE BASE DU CALCUL SISMIQUE

Le niveau de performance sismique d'une structure est obtenu par un dimensionnement qui confère à la structure, la résistance, la rigidité et la ductilité adéquates. La philosophie de base pour le calcul sismique des structures est donc axée sur les principes suivants :

2.3.1- SEISMES A FAIBLE INTENSITÉ

Pour un séisme à faible intensité, le calcul doit permettre de conférer à la structure d'un bâtiment courant une rigidité suffisante afin d'éviter les dommages dans les éléments structuraux et les éléments non structuraux en limitant ses déformations.

2.3.2- SEISMES A INTENSITE MOYENNE

Pour un séisme à intensité moyenne, la structure d'un ouvrage courant, doit avoir non seulement une rigidité capable de limiter les déformations, mais aussi une résistance suffisante pour limiter les dommages dans les éléments non structuraux et éviter les dommages structuraux en demeurant essentiellement dans le domaine élastique.

2.3.3- SEISMES VIOLENTS

Pour un séisme violent, le calcul doit permettre de conférer à la structure non seulement une rigidité et une résistance suffisante, mais également une ductilité importante pour absorber l'énergie sismique, par grandes déformations inélastiques, et résister sans s'effondrer.

Commentaire 2.1:

Pour les bâtiments à usage ordinaire (Immeubles résidentiels, bureaux) leur protection contre les dommages est évaluée par l'importance des déplacements latéraux inter étages.

Pour certaines catégories de bâtiments, tels que les hôpitaux et les laboratoires, leur fonctionnalité peut être affectée par l'endommagement des éléments non structuraux ou par le glissement de leurs équipements mécaniques et électriques. Les déformations admissibles dépendent de la nature des éléments non structuraux et des équipements, ainsi que des conséquences socio-économiques résultant de la perturbation des services affectés.

Commentaire 2.2

Pour le calcul, le présent règlement considère que le niveau du risque sismique est évalué en fonction de la vitesse maximale des zones sismiques.

Un séisme est considéré faible pour des valeurs de v (rapport de vitesse sur 1m/s) inférieures à 0.10 pour une probabilité de dépassement sur 50 ans, de10%, ce qui correspond à une période de retour de 475 ans. (Zones : 0 et 1).

Il est considéré modéré pour des valeurs de v comprises entre 0.1 et 0.205 (zones : 2-3 4) .Au-delà de cette valeur le séisme est considéré violent.

CHAPITRE III

PARAMETRES DE CLASSIFICATION DES STRUCTURES

Les structures sont classées selon l'importance de leur usage, leur configuration et leur capacité de dissipation d'énergie.

3.1- USAGE DE LA STRUCTURE

3.1.1- CLASSIFICATION

Le niveau minimal de performance requis pour un bâtiment dépend des conséquences socioéconomiques des dommages qu'il pourrait subir en cas de séisme. Ces conséquences dépendent de l'usage du bâtiment.

Le« RPS 2000, version 2011 » répartit les bâtiments, selon leur usage principal en trois groupes de priorité sismique. A chaque groupe correspond un facteur d'importance ou de priorité sismique. Le facteur I donné dans le tableau 3.1, est un facteur additionnel de sécurité.

Toutefois, le maître d'ouvrage peut surclasser un bâtiment particulier par sa vocation pour une protection plus accrue.

3.1.1.1- CLASSE I: BATIMENTS D'IMPORTANCE VITALE

Sont groupées dans cette classe les constructions destinées à des activités sociales et économiques vitales pour la population et qui devraient rester fonctionnelles, sans ou avec peu de dommages, après le séisme. On distingue notamment selon l'usage :

- Les constructions de première nécessité en cas de séisme tels que : Les établissements de protection civile, les centres de décision, les hôpitaux, les cliniques, les grands réservoirs et châteaux d'eau, les centrales électriques et de télécommunication, les postes de police, les stations de pompage d'eau;
- Les constructions destinées au stockage des produits à haut risque pour le public et

l'environnement.

3.1.1.2- CLASSE II: BATIMENTS DU GRAND PUBLIC

Sont groupées dans cette classe les constructions présentant un risque en raison du grand public qu'elles abritent. On distingue notamment :

- Les constructions d'importance socio-culturelle, tels que les bâtiments scolaires et universitaires, les bibliothèques, les musées, les salles de spectacles et de sport, les grands lieux de culte (mosquées, églises, etc.);
- Les salles de plus de 300 personnes tels que les salles de fête, les salles d'audience, le siège du parlement, les centres commerciaux.

3.1.1.3- CLASSE III: BATIMENTSORDINAIRES

Sont groupées dans cette classe les constructions n'appartenant ni à la classe 1, ni à la classe 2, tels que les bâtiments courants à usage d'habitation, de bureaux ou de commerce.

3.1.2- COEFFICIENT D'IMPORTANCE I

Le coefficient d'importance I est égal à 1.3 pour les bâtiments de classe I, à 1.2 pour les bâtiments de classe II et à 1 pour les autres bâtiments de la classe III.

Classe de constructions	Coefficient 1	
Classe I	1.30	
Classe II	1.20	
Classe III	1.0	

Tableau 3.1 – Coefficient de priorité I

3.2- REGULARITE STRUCTURALE

La méthode d'analyse d'une structure et sa réponse sismique sont liées à sa configuration. L'approche dite « analyse statique équivalente » est basée sur la distribution régulière de la rigidité et de la masse dans la structure. Historiquement, les bâtiments à configuration régulière se sont mieux comportés vis à vis des séismes.

Toute structure doit être classée selon sa configuration, en plan et en élévation, en structure régulière ou irrégulière.

3.2.1-REGULARITÉ EN PLAN

a) La structure doit présenter une forme en plan simple, tel que le rectangle, et une distribution

de masse et de rigidité sensiblement symétrique vis à vis de deux directions orthogonales au moins, le long desquelles sont orientés les éléments structuraux résistant à l'action sismique. Lorsque le système structural n'est pas orienté le long d'un ensemble d'axes orthogonaux la structure est considérée irrégulière (Figure 3.6).

b) En présence de parties saillantes ou rentrantes leurs dimensions ne doivent pas dépasser 0.25 fois la dimension du coté correspondant :

a+b ≤0.25 B, tel qu'illustré dans la figure 3.1

- c) A chaque niveau, la distance entre le centre de masse et le centre de rigidité, mesurée perpendiculairement à la direction de l'action sismique, ne doit pas dépasser 0.20 fois la racine carrée du rapport de la raideur de torsion sur la raideur de translation.
- d) L'élancement (grand coté L/petit coté B) ne doit pas dépasser la valeur 3.5.(Figure:3.1)

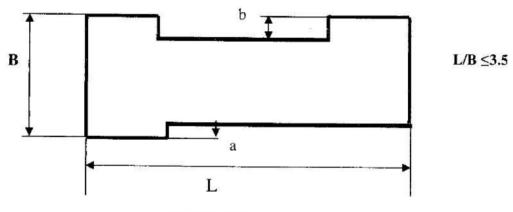
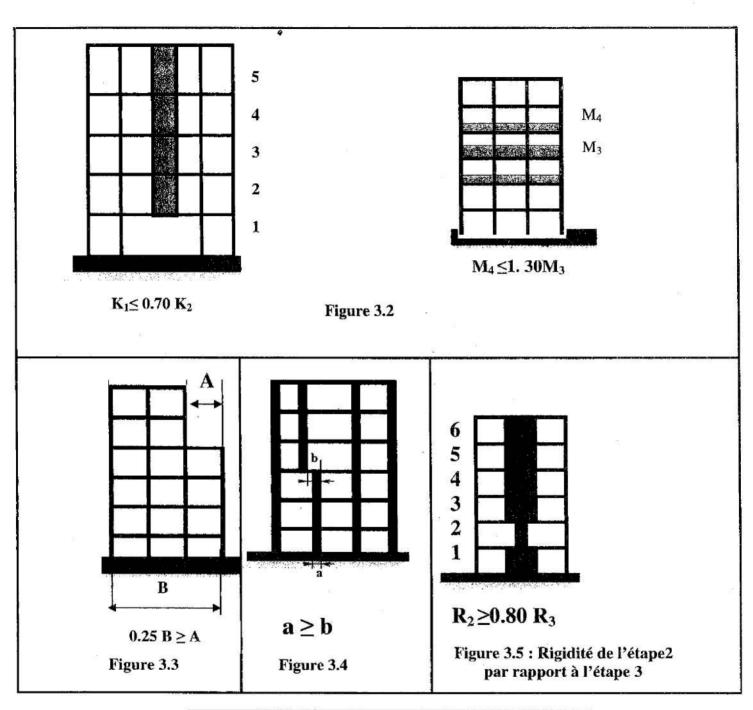
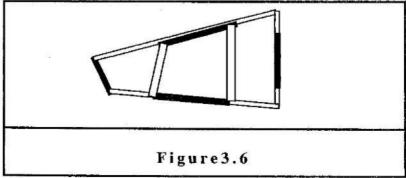


Figure: 3.1


3.2.2-REGULARITE EN ELEVATION


La distribution de la rigidité et de la masse doit être sensiblement régulière le long de la hauteur du bâtiment. Les variations de la rigidité et de la masse entre deux étages successifs ne doivent pas dépasser 30 %. (Figure 3.2)

- a) Dans le cas d'un rétrécissement graduel en élévation, le retrait à chaque niveau ne doit pas dépasser 15% de la dimension en plan du niveau précédent sans que le retrait global ne dépasse 25% de la dimension en plan au niveau du sol (Figure 3.3);
- b) Dans le cas d'un élargissement graduel en élévation, la saillie à chaque niveau ne doit pas dépasser 10% de la dimension en plan du niveau précédent sans que le débordement global ne dépasse 25% de la dimension en plan au niveau du sol;
- c) La hauteur totale du bâtiment ne doit pas dépasser 4 fois la plus petite dimension de sa

base;

- d) Un élément vertical du système structural résistant aux forces latérales ne doit pas avoir de décalage. Le trajet de forces latérales doit être continu (Figure 3 .4);
- e) La résistance au cisaillement du système structurel à un niveau donné ne doit pas être inférieure à 80% de la résistance du niveau supérieur. La résistance au cisaillement d'un étage est constituée de la résistance totale de tous les éléments du système structural qui partagent les efforts tranchants à l'étage pour la direction sismique considérée (Figure 3.5).

3.3- DISSIPATION D'ENERGIE ET DUCTILITE

3.3.1- OBJECTIF

Pour concevoir de façon économique une structure soumise à l'action sismique, les incursions dans le domaine post-élastique sont admises. L'objectif de la ductilité d'un système structural est d'assurer une capacité de dissipation de l'énergie induite par le séisme, et ce par des déformations inélastiques sans réduction substantielle de sa résistance. Un tel mécanisme en mouvement cyclique absorbe beaucoup d'énergie et peut donc procurer à la structure un comportement très efficace vis-àvis du séisme (structure dissipative). (Figure : 3.2)

La capacité de dissipation d'énergie d'une structure, dépend de plusieurs paramètres dont notamment les caractéristiques des matériaux des différentes composantes de la structure, béton et acier; le type de système structural, les dimensions des éléments, le taux d'acier en béton, les détails constructifs et le contrôle du mécanisme de formation de rotules.

3.3.2- CLASSE DE DUCTILITÉ

Le système structural de tout bâtiment conçu pour résister aux efforts sismiques doit présenter une ductilité suffisante au cours du séisme. Pour des raisons de simplicité, le règlement définit trois niveaux de ductilité. Le passage d'un niveau à un autre est fonction de prescriptions spéciales relatives notamment au dimensionnement des éléments et aux détails d'assemblage aux connections des éléments de la structure, de façon à permettre aux éléments le comportement prévu lors de leur conception.

3.3.2.1- FAIBLE DUCTILITÉ: ND1

Ce niveau de ductilité correspond aux structures dont la réponse sismique doit évoluer essentiellement dans le domaine élastique, conçues selon le règlement de béton armé et charpente métallique en vigueur avec quelques exigences relatives aux détails et aux dispositions constructives tels qu'indiqués au chapitre 7.

3.3.2.2- DUCTILITÉ MOYENNE: ND2

Pour ce niveau de ductilité des prescriptions sismiques spécifiques sont à adopter pour permettre à la structure d'entrer dans le domaine inélastique au cours du mouvement sismique avec une protection raisonnable contre toute rupture prématurée.

3.3.2.3- DUCTILITÉ ÉLEVÉE : ND3

Pour ce niveau de ductilité, des prescriptions spéciales relatives à l'évaluation de l'action de calcul, au dimensionnement et aux détails d'assemblage des éléments doivent être adoptées pour assurer la formation des mécanismes stables prévus, permettant le développement d'une grande

capacité de dissipation d'énergie.

3.3.3- DUCTILITE ET CLASSES DE BATIMENTS

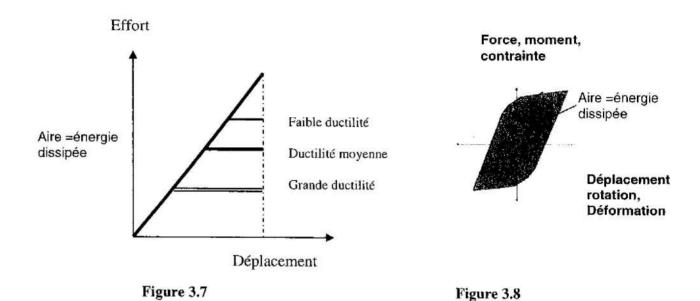
Pour le calcul sismique, une structure doit avoir un niveau de ductilité selon le comportement requis pour cette structure qui traduit sa capacité à dissiper l'énergie provenant du séisme.

Pour un grand séisme dont la fréquence d'apparition est très longue par rapport à la vie d'un bâtiment, une plus grande ductilité peut être allouée à la structure. Toutefois pour un petit séisme dont l'espérance d'apparition est grande, il est logique d'imposer que la structure sollicitée demeure dans le régime élastique.

Il n'est certainement pas justifié d'appliquer une ductilité excessive pour réduire les efforts sur la structure correspondant à des mouvements du sol ayant une probabilité de dépassement élevée.

Le tableau 3.2 illustre le niveau de ductilité requis pour les trois classes de bâtiments en fonction de l'intensité du séisme.

CLASSES DE BATIMENTS	NIVEAU DU SEISME (v : facteur de vitesse)			
	$v \le 0.10$	$0.10 < v \le 0.20$	0.20 <v< b=""></v<>	
CLASSE I	ND1	ND2	ND3	
CLASSE II				
CLASSE III	ND1		ND2	


Tableau 3.2 : Ductilité et classes de bâtiments

Dans le cas où il y a de grandes incertitudes quant à la possibilité de se trouver près des sources sismiques potentielles ou à la difficulté de l'évaluation des effets de l'amplification du site par exemple, il est demandé d'utiliser le niveau de ductilité ND3 pour un séisme moyen au lieu de ND2.

Commentaire 3.1

Une structure peut être conçue pour résister à un séisme donné sans subir aucun dommage et ce en absorbant l'énergie sismique par un comportement élastique (Figure 2.1). Cependant, une telle conception ne serait pas économique, voir même réaliste, en raison du niveau très élevé de sécurité structurale pour une très faible probabilité de l'occurrence d'un tel événement (10% en 50 ans d'après le règlement). Il serait plus réaliste et économique d'admettre un risque de dommage contrôlable et réparable, sans entraîner l'écroulement de la structure. Il faut donc procurer à la structure une capacité de se déformer de manière ductile au delà de sa limite élastique sans perte significative de résistance permettant ainsi l'absorption d'une grande partie de l'énergie sismique par un comportement non élastique de certaines membrures de la structure sans grand dommage. Dans ce

cas les déformations non élastiques peuvent être plusieurs fois plus importantes que les déformations élastiques, mais la force sismique de dimensionnement de la structure est moins importante que dans le cas du comportement élastique. Cependant, la réduction de la force sismique doit s'accompagner d'exigences additionnelles de conception et de détails constructifs relatifs aux éléments structuraux et leurs connexions.

Commentaire 3.2

- Pour que les membrures d'une structure en béton puissent présenter une ductilité adéquate et avoir un comportement stable sous des déformations cycliques importantes, il est demandé que les qualités du béton soient supérieures à celles du béton utilisé dans les cas non sismiques.
- Si différents types de système de contreventement résistent ensemble dans la même direction aux charges sismiques, la valeur de K à retenir est la plus faible valeur correspondant à ces systèmes.

Le facteur de réduction de la force sismique de calcul, ou coefficient de ductilité K, caractérise la capacité d'une structure à dissiper l'énergie par comportement inélastique.

Ce coefficient est donné, par le tableau 3.3 en fonction du type du système de contreventement et du niveau de ductilité choisi.

Système de contreventement	ND 1	ND2	ND 3
	SATURES EN BI	ND2 ETON ARME	ND 3
Portiques en Béton armé	2	3.5	5
Voile et Portique	2	3	4
Voile	1.4	2.1	2.8
Voiles couplés	1.8	2.5	3.5
	OSSATURES E	N ACIER	
Portique à nœuds rigides	3	4.5	6
Ossature contreventée	2	3	4

Tableau 3.3 : Facteur de comportement K

CHAPITRE IV REGLES DE BASE DE CONCEPTION

4.1- EXIGENCE GENERALES

- a) Chaque ouvrage et tous ses éléments structuraux doivent être conçus et réalisés de manière à satisfaire les exigences du présent règlement.
- b) Ils doivent être conçus et réalisés de manière à avoir une rigidité, une résistance et une ductilité suffisantes pour résister aux sollicitations sismiques déterminées par le présent règlement.
- c) Le système structural résistant aux sollicitations sismiques pour les transmettre au sol doit être clairement défini pour l'ouvrage.
- d) L'action sismique et l'action du vent sur une structure ne sont pas prises en considération simultanément. Il s'agit de prendre en considération les sollicitations les plus défavorables.

4.2- PROPRIETES DES MATERIAUX STRUCTURAUX

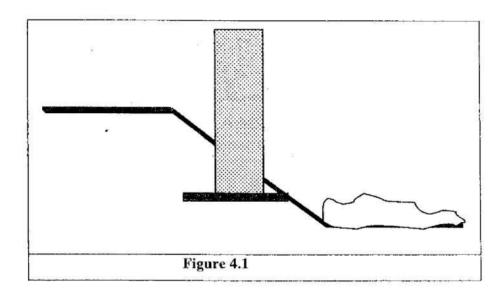
4.2.1- BETON

- a) Il est demandé que le béton utilisé pour les constructions en zones sismiques ait un comportement stable sous de grandes déformations réversibles.
- b) Les caractéristiques mécaniques doivent être conformes au règlement en vigueur de béton armé, Toutefois la résistance à la compression doit être supérieure 22 à Mpa.

4.2.2- ACIER

Il est demandé que :

- · Les armatures pour le béton armé soient à haute adhérence ;
- La valeur supérieure de la limite d'élasticité f_esoit égale à 500 MPa;
- Le coefficient de sécurité à adopter ait pour valeur : η = 1.15;
- Le diagramme déformations-contraintes est celui utilisé par le règlement du béton armé.


4.3- CHOIX DU SITE

a) En présence d'une faille, les ouvrages de classe I et de classe II doivent être implantés en dehors d'une bande de 120 m au minimum de part et d'autre de la faille et faire l'objet d'un niveau de protection une fois et demi plus élevé.

Toute construction de bâtiments de classe III (bâtiments ordinaires) ne peut être réalisée au voisinage des failles actives qu'après une étude spéciale du site qui définit les limites du voisinage.

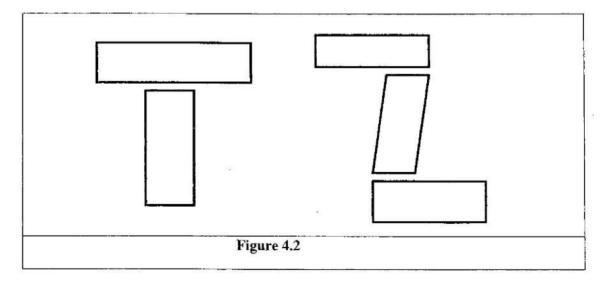
b) Les études du sol du site des fondations sont obligatoires et conduites de la même manière que dans le cas des situations non sismiques. Elles doivent notamment permettre le classement du site par rapport aux différents types prescrits par le règlement.

- c) Une attention particulière doit être portée aux conditions des sites à risque telles que :
 - · La présence de remblai non compacté ou sol reconstitué;
 - La présence de nappe peu profonde susceptible de donner lieu à une liquéfaction en cas de séisme;
 - Le risque de glissement de terrain.
- d) Dans les sites à risques, tels les talus naturels ou artificiels, ou les sols liquéfiables, les constructions ne sont autorisées que si des mesures pour limiter les risques sont prises.

4.4- SYSTEME DE FONDATIONS

- a) Le système de fondation représente l'ensemble des semelles et des éléments au dessous du niveau de base. Le choix de ce système est en principe effectué dans les mêmes conditions qu'en situations non sismiques et il est dimensionné conformément aux règlesen vigueur.
- b) Pour chacun des blocs constituant l'ouvrage, la fondation doit être homogène et rigide tels que les radiers, les semelles filantes croisées dans les deux sens et les semelles isolées liées par des longrines dans les deux sens.
 - c) Le système de fondation doit pouvoir :
 - assurer l'encastrement de la structure dans le terrain ;
 - transmettre au sol la totalité des efforts issus de la superstructure ;
 - limiter les tassements différentiels et/ou les déplacements relatifs horizontaux qui pourraient réduire la rigidité et/ou la résistance du système structural.
 - d) Les points d'appuis de chacun des blocs composant l'ouvrage doivent être solidarisés

par un réseau bidimensionnel de longrines ou tout autre système équivalent tendant à s'opposer à leur déplacement relatif dans le plan horizontal. Cette solidarisation n'est pas exigée si les semelles sont convenablement ancrées dans un sol rocheux non fracturé et non délité.

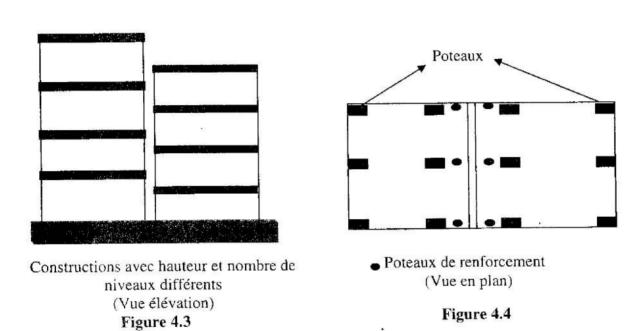

- e) Les fondations doivent être calculées de telle sorte que la défaillance se produise d'abord dans la structure et non dans les fondations.
 - f) Les éléments de fondation profonde supportent le bâtiment soit :
 - en transmettant par leur pointe les charges à une couche profonde et solide ;
 - par frottement ou par adhérence de leur paroi au sol dans lequel ils se trouvent ;
 - · par une combinaison des deux actions.
- g) Dans le cas des fondations en pieux, ces derniers doivent être entretoisés dans au moins deux directions pour reprendre les efforts horizontaux appliqués au niveau du chevêtre des pieux sauf s'il est démontré que des moyens de retenue des pieux équivalents sont en place.

4.5- STRUCTURE

4.5.1- CONFIGURATION SIMPLE

Pour permettre à une structure d'avoir un comportement performant vis à vis des sollicitations sismiques, celle-ci doit avoir une configuration simple autant que possible.

Dans le cas de blocs de bâtiments avec configuration en plan peu ordinaire, telle que la forme en H, L, T, U, Z, il faut utiliser des joint sismiques pour simplifier la forme de la structure. (Figure 4.2)



4.5.2- ESPACEMENT ENTRE DEUX BLOCS.

Il faut séparer par des joints les bâtiments de hauteurs et de masses très différentes (écart supérieur à 15%); ou de niveaux intercalés (Figure 4.3 et 4.4)

a) Le joint de séparation entre deux blocs adjacents doit assurer le libre déplacement desblocs sans contact préjudiciable. Son matériau de remplissage ne doit pas pouvoir transmettre l'effort d'un bloc à l'autre. (Figure 4. 3).

- b) La largeur du joint entre deux structures ne doit pas être inférieure à la somme de leurs déformations latérales respectives incluant les déformations de torsion.
 - c) A défaut de justification la largeur du joint entre deux blocs sera supérieure à axH_2 ; avec H_2 la hauteur du bloc le moins élevé, a=0.003 pour les structures en béton a=0.005 pour les structures en acier.
 - d) La largeur minimale entre joints ne doit pas être inférieure à 50 mm.
 - e) Si la largeur du joint entre deux bâtiments est insuffisante, ceux ci doivent être rigidifiés, par voiles ou par poteaux (Figure 4.4), ou être reliés entre eux.

4.6- ELEMENTS NON STRUCTURAUX

- a) Les éléments non structuraux peuvent être affectés suite à des vibrations sismiques en raison de la déformation excessive du système structural ou de la détérioration de leur résistance.
- b) Il faut s'assurer que les panneaux de séparation négligés dans le calcul ne créent pas d'efforts de torsion importants.
- c) Il faut s'assurer dans le cas des murs de remplissage que les poteaux et les poutres adjacents à ces murs peuvent supporter le cisaillement développé par les poussées des murs aux nœuds du portique.
- d) En l'absence d'interaction entre le système structural et les éléments non structuraux, ces derniers doivent être disposés de telle sorte à ne pas transmettre au système structurel les efforts qui n'ont pas été pris en compte dans le calcul.

e) Dans le cas d'interaction entre le système structural et des éléments rigides non structuraux, tels que les murs de remplissage, il faut faire en sorte que la résistance du système ne soit pas diminuée par l'action ou la défaillance de ces éléments.

CHAPITRE V DONNEES SISMIQUES

5.1- SISMICITE DU MAROC

Le territoire marocain est soumis à une activité sismique appréciable, et ce à cause de sa situation dans un domaine de collision continentale, due à l'interaction entre les plaques tectoniques africaine et eurasienne.

A l'Ouest du Détroit de Gibraltar, le Maroc est soumis à l'influence de l'activité de la zone transformante dextre des Açores-Gibraltar qui sépare l'Atlantique centrale et l'Atlantique Nord à croûte océanique (source du grand tremblement de terre du 1erNovembre 1755, de magnitude 9 qui est responsable d'importants dégâts sur le territoire marocain et d'un tsunami destructeur sur la côte atlantique).

A l'Est du détroit de Gibraltar, le Maroc est soumis à l'influence des failles d'échelle crustale de la mer d'Alboran (source du séisme du 22 Septembre 1522 qui a été destructeur dans le Nord du Rif et à Fès) qui se prolonge vers le Nord du Maroc par des failles majeures (Jebha, Nekor etc.). La valeur maximale de la magnitude enregistrée dans cette région de 1900 à 2007 est de l'ordre de 6.3.

5.2- SEISME DE CALCUL

5.2.1- MODELISATION DU MOUVEMENT DU SOL

Pour l'évaluation de l'action du tremblement de terre sur une structure, le mouvement sismique du sol est défini par les paramètres suivants:

- L'accélération maximale du sol Amax
- La vitesse maximale du sol V_{max}
- Un spectre de réponse en termes d'accélération pour le mouvement horizontal relatif à un type de site normalisé à l'accélération unitaire.
- Un spectre de réponse du mouvement vertical est déduit du spectre horizontal par un coefficient de 2/3, du fait que l'amplitude du mouvement vertical est inférieure à celle du mouvement horizontal.

Des paramètres additionnels tels que le déplacement maximal et la durée du séisme compléteraient la description des mouvements du sol et l'estimation du potentiel du dommage. Toutefois, les deux paramètres, accélération maximale et spectre de réponse, sont considérés adéquats pour les applications du présent règlement.

Commentaire 5.2.1

Il est connu que les dommages aux structures de courtes périodes (T < 0.5 s) sont reliés à

l'accélération maximale du sol. Pour des structures de périodes moyennes (0.5 à5s) le niveau de vitesse devient plus approprié. Pour les longues périodes le comportement de la structure est contrôlé par le déplacement maximal.

5.2.2- ZONAGE SISMIQUE (ACCELERATION ET VITESSE MAXIMALES)

- a) Pour simplifier le calcul des charges sismiques et uniformiser les exigences de dimensionnement des structures à travers de grandes régions du pays, le « RPS 2000, version 2011 » utilise l'approche des zones. Il s'agit de diviser le pays en plusieurs zones de sismicité homogène et présentant approximativement le même niveau d'aléa sismique pour une probabilité d'apparition donnée.
- b) Dans chaque zone, les paramètres définissant l'aléa sismique, tels que l'accélération ou la vitesse maximale horizontale du sol, sont considérés constants.
- c) Pour identifier adéquatement le caractère particulier d'un séisme en un endroit donné le règlement adopte un zonage séparé pour les paramètres A_{max} et V_{max} exprimées respectivement en fraction de 1g et 1 m/s.
- d) Chacune des deux cartes de zonage sismiques adoptées par le « RPS 2000, version 2011 » comporte actuellement cinq zones (0 à 4) reliées à l'accélération horizontale maximale du sol $A_{max}(Za=0;1;2;3;4)$ et à la vitesse horizontale maximale du sol $V_{max}(Zv=0;1;2;3;4)$, pour une probabilité d'apparition de 10% en 50 ans, ce qui correspond à une période de retour de 475. Cette probabilité est considérée raisonnable, car elle correspond à des séismes modérés, susceptibles de se produire plusieurs fois dans la durée de vie d'une structure. Les deux cartes des zonages sismiques relatives à A_{max} et à V_{max} sont présentes respectivement dans la figure 5.2. et la figure 5.3.
- e) Le rapport v de vitesse de la zone, est égal à la vitesse horizontale du sol pour la zone rapportée à l'unité 1 m/s. Les valeurs de v pour les différentes zones sont données dans le tableau 5.1.

Commentaire 5.2.2:

Le niveau de probabilité d'apparition, utilisé pour la carte des zones sismiques, est mieux exprimé sur une période égale à la vie utile d'un bâtiment, soit 50 ans, niveau de protection que procure le présent règlement.

Le zonage pourra être révisé et défini, par voie de décret, à la lumière de nouvelles connaissances et nouveaux résultats scientifiques ou expérimentaux.

Paramètre de vitesse v /1(m/s)	Numéro de zone de vitesse
0.00	0
0.07	1
0.10	2
0.13	3
0.17	4

Tableau 5.1 - Coefficient de vitesse (Probabilité 10% en 50 ans)

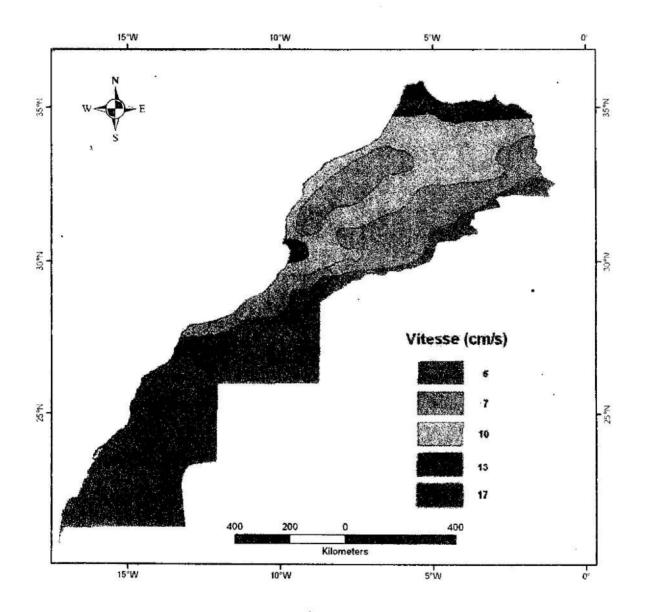


Figure 5.2 : Zonage sismique en vitesse pour des probabilités de 10% en 50ans Maroc 2011(vitesse cm/s)

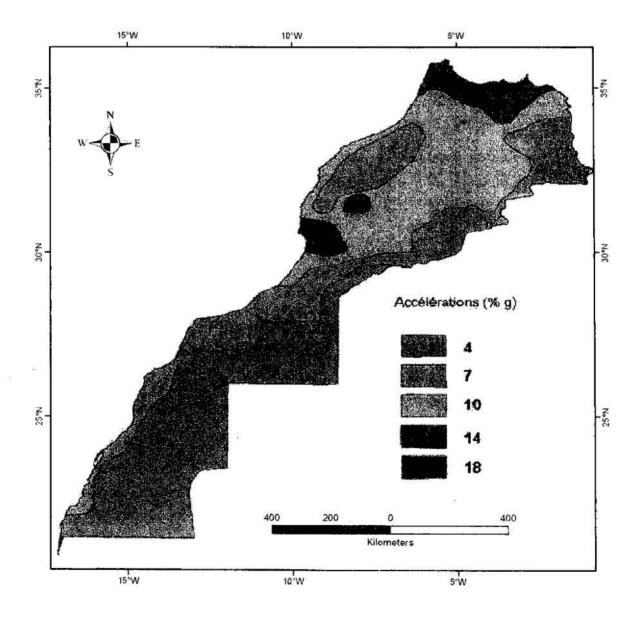


Figure 5.3 : Zonage sismique en accélération pour des probabilités de 10% en 50ans Maroc 2011(Accélération %g)

5.2.3- SPECTRE D'AMPLIFICATION DYNAMIQUE

5.2.3.1- DEFINITION

Le troisième paramètre définissant le séisme est le spectre d'amplification. Le spectre proposé est déduit du spectre élastique représentant l'idéalisation de l'enveloppe de divers spectres de réponse normalisés rapportés à la valeur unité de l'accélération horizontale maximale du sol. Il définit le facteur d'amplification dynamique de la réponse en fonction de la période fondamentale de la structure.

5.2.3.2- Influence du site

L'intensité avec laquelle un séisme est ressenti en un lieu donné, dépend dans une large mesure de la nature des sols traversés par l'onde sismique et des conditions géologiques et géotechniques locales. Les conditions locales du sol sont très importantes. En effet si la fréquence du sol est proche de celle de la structure, on est en présence d'une amplification dynamique du sol.

Pour tenir compte de ces effets sur le spectre de réponse du mouvement du sol, un classement des sites en cinq types est adopté en fonction des caractéristiques mécaniques du sol et de son épaisseur, comme présenté au tableau 9.1.

A chaque type de site correspond un coefficient.

En cas de manque d'informations sur les propriétés du sol pour choisir le type de site adéquat, on adopte le coefficient et le spectre du site S2.

Sites	Nature	Coefficient
S1	Rocher toute profondeur Sols fermes épaisseur < 30 m	1
S2	Sols fermes épaisseur ≥30 m Sols meuble épaisseur <30 m	1,20
S3	Sols meubles épaisseur ≥15 m Sols Mous épaisseur <10 m	1, 4
S4	Sols Mous épaisseur ≥10 m	1.8
S5	Conditions spéciales	*

Tableau 5.2 : Coefficient de site

^{*} La valeur du coefficient de S5 sera établie par un spécialiste.

5.2.3.3- Facteur d'amplification

- a) Le règlement tient compte à la fois des paramètres A_{max} et V_{max}. fournis par les cartes.
- b) Alors que le paramètre vitesse établit la zone pour identifier le niveau du risque sismique, l'influence du paramètre d'accélération, se fait par l'intermédiaire du facteur d'amplification qui qualifie le comportement de la structure en fonction de sa période de vibration. Il est représenté par l'ordonnée du spectre de calcul.
- c) Le spectre de calcul défini pour un coefficient d'amortissement égal à 5 % pour le site S1 préconisé par le présent règlement est représenté dans la figure 5.3. L'ordonnée du spectre représentant le facteur d'amplification sismique, est définie conformément au tableau 5.4
- d) Pour des valeurs du coefficient d'amortissement différentes de 5 %, les corrections des spectres normalisés sont obtenues en multipliant les ordonnées du spectres de la figure 5.3 par le coefficient $\mathbf{m} = (5/\mathbf{x})^{0.4}$

	Période T		9 P
Rapport des zones Za / Zv	≤ 0.25	0.25< T < 0.50	0.50 ≤
1 <	1.9	1.9	1.20/(T) ^{2/3}
1=	2.5	- 2.4 T + 3.1	
1 >	3.5	- 6.4 T + 5.1	

Tableau 5.3- Facteur d'amplification D

Za= valeur de l'accélération selon le zonage Zv= valeur de la vitesse selon le zonage

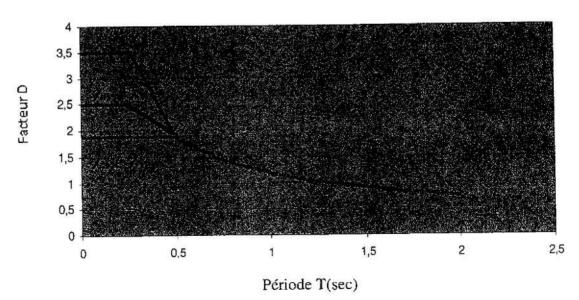


Figure 5.4: Facteur d'amplification dynamique

CHAPITRE VI EVALUATION DE L'EFFORT SISMIQUE

6.1- DIRECTION DE L'ACTION SISMIQUE

Le comportement d'une structure durant un tremblement de terre est essentiellement un problème de vibrations. Par hypothèse, les forces sismiques agissent dans toutes les directions horizontales. Cependant il est admis que des calculs distincts par rapport à chacun de deux axes principaux suffisent pour donner à la structure la résistance adéquate aux forces sismiques agissant dans toutes les directions.

6.2- APPROCHES DE CALCUL DE L'ACTION SISMIQUE

Le calcul des actions sismiques peut être mené par deux approches distinctes : Une approche dite statique équivalente et une approche dynamique.

6.2.1- APPROCHE STATIQUE ÉQUIVALENTE

6.2.1.1- PRINCIPE

L'approche statique équivalente a comme principe de base de substituer aux efforts dynamiques développés dans une structure par le mouvement sismique du sol, des sollicitations statiques calculées à partir d'un système de forces, dans la direction du séisme, et dont les effets sont censés équivaloir à ceux de l'action sismique.

- a) La force statique résultante équivalente est donnée par une expression forfaitaire qui relie, d'une façon quantitative, les paramètres de mouvement du sol, les propriétés physiques et dynamiques du bâtiment et son usage principal. Elle agit à la base du bâtiment et elle est supposée répartie sur sa hauteur depuis sa base où elle est nulle jusqu'au sommet (Figure 6.1).
- b) La structure étant soumise à ces forces statiques équivalentes, on est alors ramené à un calcul de contreventement s'effectuant par les méthodes usuelles de calcul des structures.
- c) Le dimensionnement des éléments structuraux est ensuite effectué en utilisant les règlements de béton armé ou de construction métallique en vigueur.

6.2.1.2- CONDITIONS D'APPLICATION

L'approche statique équivalente, adoptée par le présent règlement, est requise dans les conditions suivantes :

- a) Le bâtiment doit être régulier conformément aux critères définis dans l'article 4.3.
- b) La hauteur du bâtiment n'excède pas 60 m et sa période fondamentale ne dépasse pas 2 secondes.

Commentaire 6.2

La limitation du domaine d'application à une hauteur de 60 m est due à l'importance des modes supérieurs de vibration pour les longues périodes liés aux structures élevées.

6.2.1.3- FORCE SISMIQUE LATERALE EQUIVALENTE

Les forces sismiques horizontales agissant sur les masses de la structure sont représentées par la force équivalente de cisaillement à la base agissant dans la direction du calcul.

La force sismique latérale équivalente représentant la réponse élastique ${f F}$ doit être calculée à l'aide de la formule suivante :

$F = \upsilon SDIW/K(6.1)$

Avec:

v: Coefficient de vitesse de zones donnée dans le fableau 5.1

S: Coefficient du site donné par le tableau 5.2

D: Facteur d'amplification dynamique donnée par le spectre d'amplification dynamique ou le tableau 5.3

I :Coefficient de priorité donné dans le tableau 3.1

K: Facteur de comportement donné dans le tableau 3.3

W:La charge prise en poids de la structure

La charge W de la structure correspond à la totalité des charges permanentes G et une fraction q des charges d'exploitation Q en fonction de la nature des charges et leur durée. On prend :

$$W = G + \psi O \qquad (6.2)$$

Le coefficient ψ est donné au tableau 6.1

Coefficient Ψ
0.20
0.30
0.40
1.90

Tableau 6.1 : le coefficient ψ

6.2.1.4- REPARTITION VERTICALE DE LA FORCE SISMIQUE :

La force sismique latérale totale F doit être répartie sur la hauteur de la structure de la manière suivante :

Une partie Ft de la force F est affectée au sommet du bâtiment ; Le reste (F-Ft) doit être réparti sur tous les niveaux y compris le dernier niveau selon la formule suivante :

 $\mathbf{F}_{n} = (\mathbf{F} - \mathbf{F}_{t}) (\mathbf{W}_{n} \mathbf{h}_{n} / \sum (\mathbf{W}_{i} \mathbf{h}_{i}))(6.3)$

i varie de 1 à n

$\mathbf{F}_{t} = 0$	si $T \le 0.7$ s
$\mathbf{F_t} = \mathbf{0.07TF}$	si T > 0.7 s

Avec:

F: Force sismique latérale totale

F_n: Force horizontale de calcul, appliquée au niveau n.

W_n: Charge totale au niveau n.

h_n: Hauteur du niveau considéré à partir du sol.

T: Période fondamentale de la structure

F_t: Force additive au dernier étage

6.3- EVALUATION DE LA PERIODE FONDAMENTALE

La période fondamentale de vibration T, caractérisant la masse et la rigidité de la structure, peut être évaluée par un calcul dynamique précis ou la méthode de Rayleigh.

Des formules empiriques peuvent être utilisées sous certaines conditions.

La valeur de la période fondamentale de vibration T peut être déterminée par les formules forfaitaires suivantes :

a) Ossature en portiques en béton armé ou en charpente en acier contreventée

$$T = 0.075 H^{3/4}$$
 (6.4)

b) Portique en acier à nœuds rigides

$$T = 0.085 \text{ H}^{3/4}$$
 (6.5)

c) Autre ossature :

$$T=0.09H/(L)^{0.5}$$
 (6.6)

Où, **H et L** exprimés en mètre, sont respectivement la hauteur totale du bâtiment et la longueur du mur ou de l'ossature qui constitue le principal système de contreventement, dans la direction de l'action sismique.

Si le principal système de résistance aux forces latérales n'a pas de longueur bien définie, L désigne la dimension du bâtiment dans la direction parallèle à l'action sismique de calcul.

- d) D'autres méthodes de calcul de la période, se basant sur une représentation de la structure tenant compte de ses propriétés physiques peuvent être utilisées sous réserve que la valeur de l'effort sismique V ne soit pas inférieure à 0.80 fois la valeur obtenue à l'aide de la période calculée par les formules (6.4) à (6.6).
 - Pour les bâtiments assimilés à des consoles : T=1.8 (mH/EI) (6.7)
 Où m est la masse par unité de longueur du bâtiment, H la hauteur totale et EI la rigidité flexionnelle.
 - Pour les bâtiments en portiques avec remplissage : T=2N(N+1)/(M/k)^{0.5} (6.8)

N est le nombre d'étages, M et k = kp + kr sont respectivement la masse et la rigidité par niveau (Figure 6.2), kp est la rigidité littérale du portique donnée par l'expression suivante :

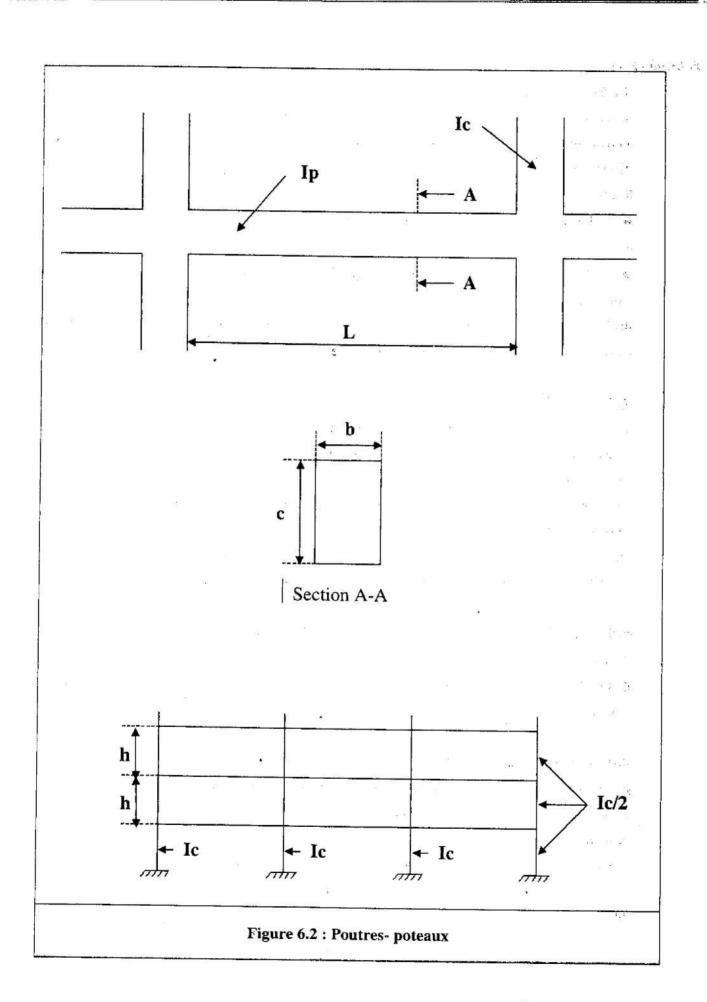
$$kp = 12.\Sigma.(Ec.Ic) / h3 (L+2 \lambda)$$
 (6.9)

Avec:

 $\lambda = LS.Ic /hS.Ip$

Σ sur le nombre de travées

kr : la rigidité latérale d'un panneau de remplissage donnée par l'expression suivante :


$$kr = 0.045.m.(Er. e cos \alpha)$$
 (6.10)

Avec :

m: nombre de travées Er module d'élasticité

e: épaisseur du panneau

a: est l'angle de la diagonale avec l'horizontale du panneau.

6.4- APPROCHE DYNAMIQUE

6.4.1- GENERALITÉS

a) Si les conditions de régularité ou de hauteur d'une structure, exigées par l'approche statique équivalente ne sont pas satisfaites, il est admis d'utiliser une approche dynamique pour l'analyse de l'action sismique.

L'approche dynamique peut être basée sur :

- La réponse maximale de la structure au moyen de spectres de réponse adaptés au site de la construction :
- Un calcul direct en fonction du temps par l'utilisation d'accélérogrammes adaptés au site de la construction.
- **b)** La valeur de l'effort latéral sismique V servant au calcul ne doit pas être inférieure à 0.90 fois la valeur obtenue par l'approche statique équivalente.

6.4.2. MODÉLISATION

- a) La structure est analysée au moyen d'un modèle spatial, en général, qui puisse tenir compte des couplages des degrés de liberté et des propriétés dynamiques réelles de la structure.
- b) Si la structure possède deux directions orthogonales, sans couplage entre les degrés de liberté horizontaux et verticaux, elle peut être analysée au moyen de deux modèles plans séparés, chacun suivant une direction orthogonale.
- c) Pour déterminer les forces d'inertie agissant à chaque niveau de la structure, celle-ci peut être modélisée par un système élastique où les masses sont concentrées à chaque niveau.

6.4.3- ANALYSE PAR SPECTRES DE RÉPONSE « APPROCHE MODALE »

L'approche de l'analyse spectrale est basée sur la détermination de la réponse maximale de la structure pour chacun de ses modes propres. La technique des modes normaux dite «méthode modale» est la plus utilisée en régime linéaire.

6.4.3.1- Combinaison des modes

La réponse maximale de la structure est alors donnée comme une combinaison des réponses des modes propres dominants. Une combinaison classique consiste à adopter la racine carrée des carrés des réponses maximales.

Dans le cas des modèles plans, l'analyse doit prendre en compte un minimum de trois modes de vibration (les trois premiers). Dans le cas d'un modèle spatial, il faut prendre en compte les quatre premiers modes au minimum.

6.4.3.2- Spectre de calcul

Le spectre présenté dans la figure 5.4 est utilisé pour le calcul de l'effort sismique relatif à chaque mode de vibration considéré.

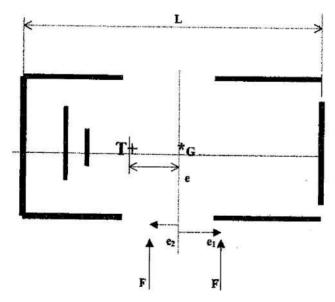
6.4.4- ANALYSE PAR ACCELEROGRAMMES OU CALCUL DIRECT

L'analyse de la structure par un calcul direct nécessite l'utilisation de plusieurs accélérogrammes adaptés au site considéré.

- a) Dans le cas d'un système linéaire, la technique des modes propres est la plus utilisée. La réponse dynamique de la structure à tout instant, est alors donnée comme une combinaison des réponses des quatre premiers modes au moins.
- b) Dans le cas d'un système non linéaire, on adopte la méthode couramment utilisée dite«pas à pas».

6.5- EFFET DE TORSION

A chaque niveau du bâtiment la force sismique latérale de calcul est déplacée de e₁dans un sens puis de e₂dans l'autre sens, données par les expressions suivantes et tel qu'illustré par la figure 6.3.


$$e_1 = 0.5 \text{ e} + 0.05 \text{ L}$$

 $e_2 = 0.05 \text{ L}$ (6.10)

Avec:

e: distance entre le centre de rigidité et le centre des masses dans la direction perpendiculaire du séisme.

L: est la dimension horizontale du plancher dans la direction perpendiculaire à l'action sismique F.

Chaque élément de résistance est conçu pour résister aux effets extrêmes des différents cas de chargement.

T: centre de torsion

G: centre de gravité des masses

Figure 6.3

6.6- ELEMENTS ARCHITECTURAUX ET EQUIPEMENTS

Les éléments du bâtiment qui ne font pas partie du système structurel et leur ancrage doivent être calculés pour résister aux déformations. La force latérale de calcul est donnée par l'expression suivante :

$$F_p = v I C_p W_p(6.11)$$

υ: Paramètres de vitesse

 $\mathbf{F}_{\mathbf{p}}$: Effort latéral agissant sur l'élément réparti selon la distribution des masses de l'élément considéré.

C_p:Coefficient de force horizontal de l'élément donné par le tableau 6.2

W_p: Poids de l'élèment.

Eléments	Cp
Diaphragme (Toits et planchers)	0.7
Balcons et éléments en porte-à-faux	4.5
Murs cloisons	1.5
Cheminées, et constructions sur toit	4.5
Sous plafonds	2.0
Muret en porte-à -faux	6.5
Machines, équipements	3
Réservoirs fixés au plancher	2

Tableau 6.2

Les diaphragmes doivent être calculés pour résister aux déformations. Les dispositifs de fixation (goujons, boulons,..) doivent être calculés pour supporter l'effort de l'élément.

CHAPITRE VII DIMENSIONNEMENT ET DISPOSITIONS CONSTRUCTIVES

7.1- COMBINAISON D'ACTIONS

a) La combinaison fondamentale des actions à considérer pour le calcul des sollicitations et la vérification des états limites est donnée par l'expression suivante :

$Sc=G+E+0.3N+\psi Q_{(7.1)}$

Avec:

G: Le poids mort et charges permanentes de longue durée

E: Effets du séisme

N : Action de la neige

Q: Charges d'exploitation

ψ: Facteur d'accompagnement dont les valeurs sont données dans le tableau 6.1

b) L'action du vent n'est pas à combiner avec celle du séisme et si le calcul au vent produit des sollicitations plus défavorables que celles obtenues en utilisant la combinaison (7.1), le dimensionnement et la vérification de la structure s'effectuent pour les sollicitations dues auvent.

7.2- SOLLICITATIONS DE CALCUL

Les sollicitations de calcul (effort normal, effort tranchant, moments de flexion et de torsion) utilisées pour le dimensionnement et la vérification des éléments structuraux sont obtenues à partir d'une analyse linéaire de la structure, sous réserve de tenir compte des modifications données dans le présent règlement, liées au niveau choisi de la ductilité.

7.2.1- DUCTILITÉ DE NIVEAU I (ND1)

Les éléments structuraux des bâtiments conçus avec une ductilité de niveau 1 sont dimensionnés et vérifiés, conformément aux règlements en vigueur, de béton armé ou de construction métallique, directement à partir des sollicitations obtenues de l'analyse linéaire de la structure.

7.2.2- DUCTILITÉ DE NIVEAU II (ND2)

7.2.2.1-PORTIQUE

7.2.2.1.1-ELEMENTS FLECHIS NON COMPRIMES

a) Un élément structural est considéré fléchi non soumis à un effort axial si l'effort normal satisfait l'expression suivante :

$N \le 0.10B f_{c28} (7.2)$

Avec:

N : Effort axial

B : L'aire de la section de l'élément fc₂₈ : Résistance caractéristique

b) Les sollicitations de calcul pour les éléments structuraux non soumis à un effort axial sont obtenues directement à partir de l'analyse linéaire de la structure.

7.2.2.1.2- ELEMENTS FLECHIS COMPRIMES (N>0.10Bfc28)

Si un bâtiment a plus de trois niveaux et que l'évaluation de l'effort sismique est obtenue par l'approche dite statique équivalente, alors les moments fléchissant dans les poteaux du portique dus aux charges latérales, sont multipliés par le coefficient dynamique opour tenir compte de l'effet des modes supérieurs. Il est donné en fonction de la période fondamentale T de la structure, par les expressions suivantes :

Pour le portique plan :

$$\omega = 0.6 \text{ T} + 0.85$$

1.3≤ ω ≤1.8 (7.3a)

Pour le portique tridimensionnel

$$\omega = 0.5T + 1.10$$
 $1.5 \le \omega \le 2.9$ (7.3b)

Le coefficient dynamique ω traduit l'effet des modes supérieurs de vibration sur les moments de flexion survenue au niveau de la hauteur de l'immeuble.

Il est constant sur les 2/3 supérieurs de la hauteur de l'immeuble et varie d'une manière linéaire sur le 1/3 inférieur.

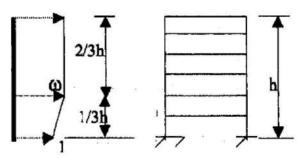


Figure 7: Coefficient dynamique ω

Commentaire 7.1

La contribution des modes supérieurs de vibration peut changer considérablement la distribution du moment fléchissant dû aux forces latérales déterminées par la méthode statique. Le point de flexion, qui est approximativement au milieu de la hauteur de la colonne sous les forces statiques, peut en réalité être loin du milieu de la hauteur ce qui se traduit par une augmentation du moment maximal dans la colonne.

L'effet des modes supérieurs augmente avec l'augmentation de la période fondamentale de la structure, d'où l'expression du coefficient ω en fonction de T.

7.2.2.2- Voiles

- a) La distribution des moments de calcul est constante sur une hauteur égale à la largeur du voile l et il est linéaire sur le reste de la hauteur. Figure 7.1
- b) Lorsque l'approche statique équivalente est adoptée pour l'évaluation de l'effort sismique de la structure, les efforts de cisaillement sont multipliés par le coefficient ω donné par les expressions suivantes :

$$\omega = 0.1N+0.9$$
 $N \le 5$
 $\omega = 1.4 + (N-5)$ $0.045 < N < 15$ (7.4)
 $\omega = 1.8 N = 15$

N étant le nombre de niveaux du bâtiment.

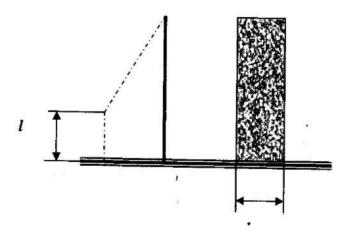


Figure 7.1

c)La charge axiale de calcul dans le mur due aux forces latérales sera déterminée en utilisant la résistance au cisaillement des trumeaux au-déssus de la section considérée, déterminée en tenant compte des caractéristiques mécaniques du béton et de l'acier.

La résistance au cisaillement du trumeau ainsi calculée sera amplifiée par 1.25.

7.2.3- DUCTILITÉ DE NIVEAU HI(ND3)

- a) Les prescriptions indiquées au 7.2.2 restent valables pour le cas du niveau de ductilité ND2.
- b) Les forces de cisaillement à la base d'un mur doivent être multipliées par le facteur y suivant :

$$\gamma = M_{ul} / M \quad (7.2)$$

Mul: Moment ultime de résistance à la base

M : Moment de calcul

Le facteur $\gamma \leq 4$.

L'effort axial approprié doit être pris en considération dans l'évaluation de la résistance flexionnelle de la section à la base du mur.

7.3- DIMENSIONNEMENT ET DETAILS CONSTRUCTIFS

7.3.1- ELEMENTS EN BETON ARME

Les éléments structuraux en béton armé doivent préalablement être calculés et exécutés selon le règlement en vigueur en tenant compte des dispositions données dans la présente partie.

7.3.1.1- Zones critiques

- a) Dans ce qui suit, une zone critique d'un élément de l'ossature doit s'entendre d'une zone à haut risque où il y a concentration de déformations.
- b) Dans les zones critiques, il est primordial d'assurer une continuité aux aciers et de disposer une armature de confinement constituée soit par des spirales continues, des cadres, étriers et épingles dont l'ancrage est assuré par des crochets à angle au centre au moins égal à 135° avec un retour rectiligne de 10 cm au moins.

7.3.1.2- Eléments unidirectionnels non comprimes (0.10 Bfc28 ≥ N)

7.3.1.2.1- Dimensions minimales des sections

- a) Les dimensions de la section transversale de la poutre, h et b étant respectivement la plus grande et la plus petite dimension, doivent satisfaire les conditions suivantes :
- b/h ≥ 0. 25
- $-b \ge 200 \text{ mm}$ (7.5)
- $-b \le b_C + h_C / 2$

 $\mathbf{b}_{\mathbf{C}}$: la dimension de la section du poteau perpendiculaire à l'axe de la poutre. $\mathbf{h}_{\mathbf{C}}$: la dimension de la section du poteau parallèle à l'axe de la poutre (voir figure 7.2)

b) La distance entre les axes de la poutre et du poteau support ne doit pas dépasser 0.25 fois la largeur du poteau. Figure 7.3 (Excentricité e ≤0.25 fois la largeur du poteau)

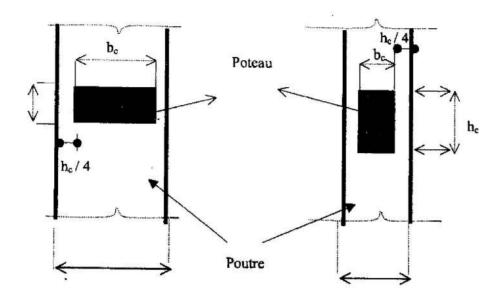


Figure 7.2 : Position poteau-poutre Figure 7.3 : Excentricité des axes poteau-poutre

7.3.1.2.2- Armatures longitudinales

1) Ductilité ND1

- a) Les armatures longitudinales doivent être à haute adhérence avec un diamètre minimal de 10 mm.
- b) Les pourcentages géométriques minimal et maximal des armatures sont les suivants : \mathbf{r}_0 minimal = 1,4 / $f_e(f_e \text{ en MPa})$ (7.6) \mathbf{r}_0 maximal = 0.025

2) Ductilité ND2 ou ND3

En complément aux a) et b) ci-dessus, les conditions suivantes doivent être satisfaites :

- c) La section des armatures comprimées dans une zone critique ne doit pas être inférieure à la moitié de la section des armatures tendues dans cette zone.
- d) L'emploi des coudes ou crochets dans les poteaux n'est permis que dans certains cas, telle que pour la liaison avec la semelle ou au voisinage d'une surface libre. Dans de tels cas, les ancrages d'extrémité sont assurés par des coudes droits et des dispositions doivent être prises pour éviter les poussées au vide.
- e) Au moins 0.25 de la section des armatures supérieures de flexion disposées aux extrémités de l'élément doit être prolongée sur toute la longueur de celui-ci.
- f) Dans le cas où une poutre en T ou en L solidaire d'une dalle croise une autre poutre

similaire sur un poteau, on peut disposer dans la dalle, de chaque coté de l'âme 1/8 de la section des armatures tendues, la largeur de la bande est égale à 2 fois l'épaisseur de la dalle pour les poteaux de rive et 4 fois l'épaisseur pour les poteaux intérieurs.

7.3.1.2.3- Armatures transversales

Le but est de confiner le béton pour augmenter sa résistance d'adhésion et de résister aux forces de cisaillement.

1- Zones critiques

Les zones critiques pour un élément poutre sont les suivantes :

- a) Les extrémités non libres de la poutre sur une longueur le égale à 2 fois la hauteur h de la poutre. (Figure 7.4).
- b) Les zones nécessitant des armatures de compression.
- c) Les zones de longueur égale à 2 fois la hauteur h de la poutre pour une ductilité ND2, situées de part et d'autre de la section de concentration maximale de contraintes (rotule plastique). Dans le cas d'une structure de ND3, lc est supérieur à 2 fois la hauteur h.

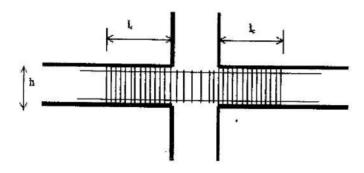


Figure 7.4 : zones critiques d'une poutre

Le diamètre minimal est = 6 mm.

Les premières armatures doivent être placées à 5 cm au plus de la face du poteau.

Pour les structures de ductilité ND1 et ND2, l'espacement s ne doit pas excéder le minimum des grandeurs suivantes :

$$s = Min (8 \Phi_L; 24 \Phi_T; 0.25 h; 20 cm)$$
 (7.7)

 Φ_L : diamètre des barres longitudinales

Φ_T : diamètre des barres transversales

Pour les structures de ductilité ND3, l'espacement s ne doit pas excéder le minimum des grandeurs suivantes :

$$s = Min (6 \Phi_L; 0.25 h; 15 cm)$$
 (7.8)

7.3.1.3- Eléments linéaires fléchis et comprimés (N > 0.10B fc28)

7.3.1.3.1- Dimensions minimales

Les dimensions de la section transversale du poteau, h_c et b_c étant respectivement la plus grande et la plus petite dimension, doivent satisfaire les conditions suivantes :

a) b_c ≥25 cm (ductilité ND1 et ND2)

b_c≥30 cm (ductilité ND3)

(7.9)

b) H/bC≤16

H: la hauteur de l'étage

7.3.1.3.2- Zone critique d'un poteau

Sont considérées comme zones critiques :

- a) Les extrémités du poteau (Figure 7.5) sur une longueur le égale à la plus grande des longueurs suivantes :
 - la plus grande dimension de la section du poteau $\mathbf{h}_{\mathbf{c}}$
 - 1/6 de la hauteur nette du poteau he
 - 45 cm

 $l_c = Max (h_c / 6; h_c; 45 cm)$

(7.10)

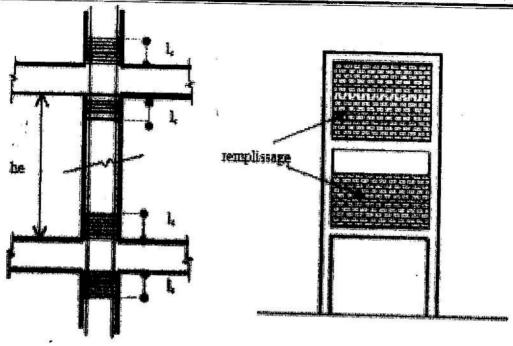
b) Dans le cas où un poteau est adjacent de part et d'autre à un mur de remplissage incomplet (Figure

7.6) la longueur minimale de la zone critique est égale à :

 $l_c=Max (x; h_c/6; b_c; 45 cm)$ (7.11)

Avec:

 $\mathbf{x} = (\mathbf{h_e} - \mathbf{h_r}) + \mathbf{b_c}$


bc: Dimension du poteau parallèle au mur.

h_r: Hauteur du remplissage.

Espacement maximum (s)

Zone critique $s = min (8 \Phi_L; 0.25 b_c; 15 cm)$ Zone courante $s = min (12 \Phi_L; 0.5 b_c; 30 cm)$

Espacement maximum (7.12)

a : moes critiques do poissa

Figure 7.5

b : portique avec receptionage

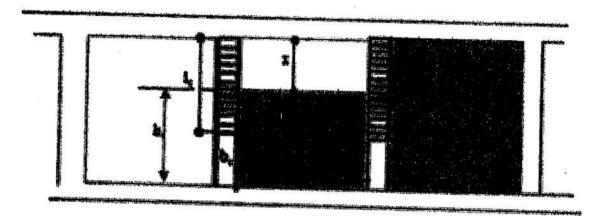


Figure 7.4 : zone critique potento rempüssage

7.3.1.3. 3.- Nœuds poteaux -poutres

a) Il est nécessaire d'éviter la formation de rotules plastiques dans les poteaux (élément porteur). Il faut qu'au niveau des nœuds poteaux- poutres, la somme des valeurs absolues des moments ultimes des poteaux soit supérieure à celle des moments des poutres aboutissant aux nœuds. (Figure 7.7)

$$|Mc1| + |Mc2| \ge 1.15 (|Mp1| + |Mp2|)(7.13)$$

- b)Il est nécessaire d'assurer une continuité mécanique suffisante des aciers dans le nœud qui est une zone critique.
- c) Il est obligatoire de disposer des cadres et des étriers de confinement dans les nœuds
- d) Dans les structures à ductilité de niveau ND1 et ND2, le taux d'acier des armatures horizontales du confinement ne doit pas être inférieur au taux d'armatures transversales existantes au bout du poteau joignant le nœud
- e) Dans les structures de ductilité plus importante NDIII le taux d'armatures transversales dans le nœud est égal à celui du poteau sauf dans le cas ou quatre poutres arrivent au nœud. Dans ce cas le taux d'armature transversale est réduit de moitié. En aucun cas l'espacement ne doit dépasser 10 fois le diamètre des armatures longitudinales du poteau.

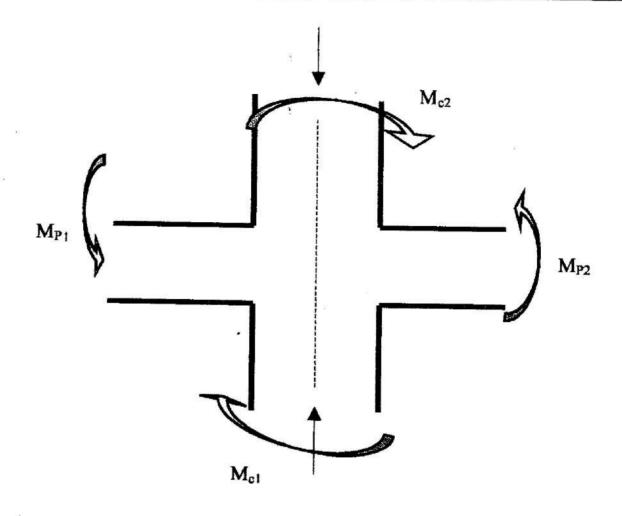


Figure 7.7: Nœuds poteaux -poutres

7.3.1.3.4- Poteaux supportant un voile discontinu (SOFT- STORY)

Les poteaux supportant un voile ou un mur de remplissage rigide doivent être confinés sur toute leur hauteur.

Ils doivent être pourvus d'armatures transversales sous forme de spirales continues ou de cadres dont l'ancrage est assuré par des crochets de 10 cm (Figure 7.8).

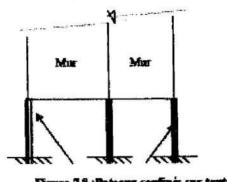


Figure 7.8 : Poteaux confinés sur toute la houteur

7.3.1.4- Voile de contreventement

7.3.1.4.1- DIMENSIONS

L'épaisseur minimale du voile est fonction de la hauteur nette he de l'étage et des conditions de rigidité des extrémités.

e min = min(15 cm, h/20) pour un voile non rigidifié à ses deux extrémités.

e min = min (15 cm, h/22) pour un voile rigidifié à une extrémité.

e min = min(15 cm, h_e/25) pour un voile rigidifié à ses deux extrémités.

Les ouvertures dans le mur doivent être rangées en files verticales et régulièrement espacées, à moins que leur influence sur le comportement du mur sous l'action sismique soit insignifiante ou prise en compte par une analyse rigoureuse. Il est prévu des éléments ferraillés autour des ouvertures, conçus pour compenser la résistance des parties évidées.

7.3.1.4.2-Chainages et linteaux

Il est à prévoir, à chaque extrémité de mur et au droit de chaque intersection de murs, un chaînage vertical, continu sur toute la hauteur de l'étage et se recouvrent d'étage à étage avec acier de couture. Autour du plancher et au croisement de chaque élément de contreventement avec le plancher, il doit être prévu un chaînage horizontal continu. Sont prévus également des chaînages dans les éléments horizontaux du mur à file d'ouvertures (linteaux).

7.3.1.4.3- ZONES CRITIOUES

Les zones critiques du voile dans la direction verticale sont les régions s'étendant de la base du mur sur une longueur le définie comme suit :

$$l_c = max (H/6, L)$$

(7.14)

Avec : H et L représentant respectivement la hauteur et la largeur du bâtiment.

7.3.1.4.4- FERRAILLAGE MINIMAL

Les éléments verticaux (trumeaux) sont armés par des aciers verticaux et des aciers horizontaux. Le taux minimal de l'armature verticale et horizontale, à toute section est égal à 0.20% de la section horizontale du béton. Le taux maximal est égal à 4%. Le diamètre des barres utilisées ne doit pas dépasser 1/10 de l'épaisseur du mur.

L'espacement des barres verticales et horizontales est égal à :

s = min(30cm, 1.5e) en zone courante

s = min(20cm, 1.5e) en zone critique

e est l'épaisseur du mur

Les deux nappes doivent être reliées, et les barres horizontales de l'extérieur sont menues de crochets à 135° ayant une longueur de 10 Φ.

Les chaînages verticaux aux extrémités sont constitués au moins de 4T10 ligaturés avec des cadres avec un espacement de 10 cm.

Les chaînages horizontaux doivent avoir une section minimale d'acier égale à 3cm'. Les chaînages des linteaux sont constitués de 2T10 ancrés de 50 cm.

Dans les zones critiques, on dispose des chaînages minimums verticaux à chaque extrémité de 4T12 avec des cadres en T6 espacés de 10 cm au plus.

7.3.1.4.5- LINTEAUX ENTRE TRUMEAUX (poutres de jonction)

Il s'agit des poutres de jonction entre deux voiles verticaux (trumeaux) Largeur de la diagonale.

La largeur de la diagonale comprimée est égale au max (0.2 h, 200 mm)

Armatures minimales

- Armatures longitudinales A_l , placées à la base et au sommet du linteau avec une section minimale $\geq 0.15\%$ de la section du mur. Figure 7.9
- Armatures longitudinales de peau disposées en deux nappes Ap(0.20 %).
- Armatures transversales (A_i) égale à :

 $A_t \ge 0.15\% bh$

si $t_b \le 0.025 \, \sigma_{28}$

 $A_t \ge 0.25\%$ bh

si $t_b > 0.025 \sigma_{28}$

· Armatures diagonales.

On distingue deux cas:

1. Contrainte de cisaillement t_b> 0.06 σ^{*}₂₈

Les efforts de flexion et de cisaillement sont repris par des bielles en acier suivant les deux directions diagonales. La section de l'armature diagonale est égale à

$$A_d = T/(2 .\sigma_{en} . \sin \alpha)$$
 (7.15)

Avec T: l'effort de cisaillement et Tanga= h/l; h et l étant respectivement la hauteur et la longueur du linteau des cadres ou des spirales en T6quisont disposées le long des diagonales avec un espacement maximal de 10 cm (Figure 7.9.)

2. Contrainte de cisaillement t_b<0.06 σ'28

On adopte des armatures inférieures et supérieures identiques.

Le linteau est calculé en flexion simple comme une poutre ordinaire.

L'ancrage des armatures diagonales dans les trumeaux est majoré de 50%.

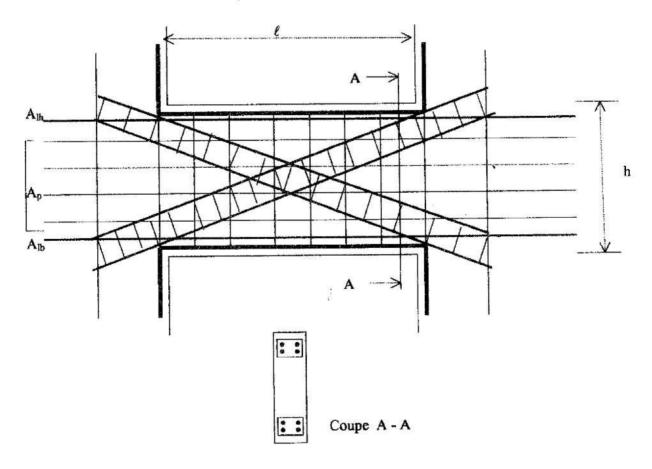


Figure 7.9: Ferraillage du Linteau

7.3.2- ELEMENTS METALLIQUES

Les éléments structuraux métalliques doivent préalablement être dimensionnés conformément au règlement et aux normes en vigueur, compte tenu des dispositions suivantes :

- a) Les structures métalliques dans la zone 3 sont à concevoir de manière que certains éléments structuraux aient un comportement dissipatif par l'utilisation de dispositif spécifique ou par l'augmentation de l'hyperstaticité.
- b) Eviter l'instabilité locale des éléments comprimés, siège de rotules plastiques, en respectant les dimensions nominales des sections de ces éléments.
- c) Les structures en cadres nœuds rigides, doivent être dimensionnées de telle sorte que les rotules plastiques se produisent dans les poutres au voisinage des nœuds.
- d) Les poteaux doivent être vérifiés vis à vis de l'effort tranchant pour s'assurer de la capacité de résistance des rotules qui pourraient se former aux extrémités des poteaux.
- e) Les poutres doivent résister au déversement par les dimensions de leurs sections ou par entretoises.

7.3.3- CONSTRUCTION EN MACONNERIE

Les règles suivantes viennent en complément des dispositions techniques prévues dans les constructions en zone non sismique afin d'assurer un minimum de sécurité vis à vis de l'action sismique, aux constructions de 1 à 2 niveaux dont les éléments structuraux sont des murs en maçonnerie.

7.3.3.1- MATERIAUX CONSTITUTIFS

Les matériaux constitutifs des murs de maçonnerie sont :

- Les blocs en béton creux ou pleins ;
- Les briques de terre cuite creuses ou pleines ;
- Les moellons ;
- Le mortier constitué de sable et ciment, dosé à 200 kg/m³;

Les caractéristiques mécaniques des blocs et des briques sont fixées par des normes pour les besoins de calcul.

7.3.3.2- MURS PORTEURS EN MAÇONNERIE

Les murs porteurs doivent être disposés symétriquement par rapport aux axes principaux du bâtiment dans deux directions perpendiculaires. La densité de distribution sera approximativement la même dans les deux directions.

Les joints verticaux et horizontaux doivent toujours être remplis. L'emploi de deux matériaux différents dans le mur porteur est à éviter. L'épaisseur du joint est comprise entre 2 et 5 cm.

7.3.3.3- MURS PORTEURS AVEC CHAÎNAGE

7.3.3.3.1- DIMENSIONS ET DISPOSITIONS

L'épaisseur minimale du mur porteur est égale à :

15 cm pour les briques et bloc plein;

20 cm pour les briques et bloc creux.

Pour augmenter la résistance des murs à l'effort tranchant, il est prévu la réalisation des chaînages horizontaux et verticaux et des encadrements de baies en béton armé.

- Les chaînages verticaux sont à disposer aux niveaux des angles et des ouvertures de hauteur supérieure ou égale à 1.50 m. La distance maximale entre deux chaînages verticaux est égale à 5m, ouvertures comprises.
- Les chaînages horizontaux sont à disposer aux niveaux des fondations et de chaque plancher. La largeur du chaînage horizontal sera égale à celle du mur avec une tolérance de 5cm.
 Aucun élément de mur ne doit présenter de bord libre en maçonnerie.

La section en béton des chaînages vertical et horizontal doit avoir une hauteur minimale égale à 15 cm.

7.3.3.3.2- ARMATURE

La section de l'armature minimale d'un chaînage doit être supérieure à 1.6 cm². Chaque angle de la section du chaînage doit comporter au moins une barre. L'espacement entre deux barres d'une même nappe ne doit pas excéder 20 cm.

Tout chaînage, horizontal ou vertical, doit comporter des armatures transversales d'espacement n'excédant pas 25 cm.

Les linteaux qui limitent à la partie supérieure l'ouverture des fenêtres ou des portes, ont une épaisseur minimale égale à 8 cm et s'appuient sur la maçonnerie sur une largeur égale au maximum de (1/10 de la portée, 30 cm) de chaque côté de l'ouverture.

Les encadrements verticaux, en béton armé, des baies et ouvertures présentant une dimension maximale inférieure à 1.5m doivent avoir une épaisseur minimale égale à 7 cm. La section d'acier des deux éléments verticaux doit équilibrer un effort de traction égal à 85 KN.

Les encadrements peuvent être réalisés en métal sous réserve de présenter une résistance à l'attraction au moins égale à celle exigée des encadrements en béton.

7.3.3.4- MAÇONNERIE ARMÉE

Ce système de construction concerne les murs constitués de blocs de béton et de briques de terre cuite, spécialement prévus pour disposer des lits d'armatures verticales et horizontales en acief. Les armatures horizontales et verticales sont disposées en lits, de deux barres au moins, allant d'un chaînage vertical à un autre et auxquels elles sont ancrées convenablement.

La section minimale des armatures, verticales ou horizontales, est égale à 0.5/1000 de la section du mur. L'espacement maximal entre deux lits horizontaux et verticaux ne doit pas dépasser 60 cm.

7.3.3.5- MAÇONNERIE DE REMPLISSAGE

Il s'agit de panneaux de maçonnerie remplissant les baies d'un portique en béton armé ou en acier et ne jouant aucune fonction porteuse des charges verticales. Ils peuvent remplir complètement ou partiellement la baie du portique. Ils sont réalisés en briques de terre cuite ou en blocs de béton. La présence des panneaux augmente la rigidité de la structure

Pour le calcul de la réponse de la structure, chaque panneau est assimilé par deux bielles croisées qui ne travaillent pas simultanément. Lorsqu'une bielle travaille en compression, l'autre est négligée.

7.3.3.6- ESCALIERS ET PLANCHER

Les dalles et les pourres des escaliers doivent être convenablement calculées pour que les déplacements relatifs inter étages soient compatibles avec la rigidité axiale et flexionnelle de la dalle des escaliers. Les planchers doivent être adéquatement attachés aux éléments verticaux résistants.

CHAPITRE VIII

REGLES DE VERIFICATION DE LA SECURITE ET DE LA FONCTIONNALITE

8.1- CRITERES DE CONCEPTION

Afin de satisfaire les exigences générales du règlement, relatives à la sécurité et à la fonctionnalité des structures (2.1.1 et 2.1.2), il est demandé de respecter les critères suivants :

- a) L'adoption de procédures fiables aussi bien au niveau de l'analyse qu'au niveau de la construction.
- b) L'examen des états limites pertinents du comportement et la vérification, par des approches analytiques basées sur des modèles appropriés, que sous l'effet des actions de calcul, ces états limites de comportement de la structure et de ses composantes, ne dépassent pas les limites fixées par le présent règlement.
- c) La réalisation des dispositions et des détails constructifs conformément au présent règlement.

Une structure est considérée répondre aux exigences de sécurité et de fonctionnalité dans une zone sismique si la vérification de la stabilité, de la résistance et des dé formations limites est satisfaite. La vérification doit être effectuée conformément aux articles 7.2 et 7.3 du présent règlement.

8.2- VERIFICATION DE LA STABILITE

La vérification de la stabilité inclut le glissement, la stabilité des fondations et le renversement.

8.2.1. STABILITE AU GLISSEMENT

Lorsque les constructions sont en pente, il doit être vérifié, par toute méthode scientifique confirmée par l'expérience, que le massif défini par la surface de glissement la plus critique reste stable. Le bâtiment doit être dimensionné pour résister à une poussée de glissement au moins 1.5 fois supérieure aux charges agissant sur le bâtiment. La vérification doit être effectuée conformément au paragraphe 9.3.

8.2.2- STABILITE DES FONDATIONS

Il doit être vérifié que le système des fondations a été dimensionné de sorte que les déformations du sol d'assise des fondations restent dans le domaine élastique, autrement dit sans déformations résiduelles importantes.

8.2.3- STABILITE AU RENVERSEMENT

La structure doit être dimensionnée pour résister aux effets de renversement dûs aux

combinaisons des actions de calcul. Un ancrage est exigé si l'effet des charges de calcul tendant à provoquer ce phénomène est supérieur à l'effet de stabilisation.

a) La stabilité est considérée satisfaite si :

$$0.10 \ge \theta = K W \Delta_{el} / v h (8.1 .a)$$

b) l'effet du second ordre est à prendre en compte dans le calcul pour :

$$0.20 \ge \theta \ge 0.10$$

(8.1.b)

c)La stabilité est considérée non satisfaite si :

$$\theta > 0.20$$

(8. 1.c)

θ: Indice de stabilité

W: Poids au-dessus de l'étage considéré

v : Action sismique au niveau considéré

h : Hauteur de l'étage
 Λ_{el} : Déplacement relatif

K: Coefficient de comportement

8.3- VERIFICATION DE LA RESISTANCE

Il doit être vérifié que pour chaque élément de la structure, caractérisée par une grande dissipation d'énergie, la condition suivante est satisfaite :

$$R_d \ge S_d$$
 (8.2)

Avec:

 S_d : Sollicitation de calcul de l'élément, relative à la flexion avec et sans effort axial, à la torsion, à l'effort de cisaillement, évaluée conformément à l'article 7.2 du présent règlement.

R_d: Résistance ultime de calcul du même élément évalué conformément à l'article 7.3.

8.4- VERIFICATION DES DEFORMATIONS

Le but est de vérifier que la structure évolue dans le domaine de ses propriétés pris en compte dans le calcul et contenir les dommages structuraux dans des limites acceptables.

- a) Il doit être vérifié que, sous l'effet des actions d'ensemble, les déformations des éléments de la structure restent limitées aux valeurs maximales fixées par le pré sent règlement.
- b) Les déplacements latéraux inter-étages Δ_{el} évalués à partir des actions de calcul doivent être limités à :

 $K \Delta_{el} \leq 0.007 h$

Pour les bâtiments de classe I

 $K \Delta_{el} \leq 0.010 h$

Pour les bâtiments de classe II (8.3)

h : Hauteur de l'étage

K: Coefficient du comportement

Le déplacement latéral total du bâtiment Ag doit être limité à 0,004H :

$$\Delta g \leq 0.004 H$$

(8.4)

H: Hauteur totale de la structure

c) Les éléments non structuraux doivent être conçus de manière à ne pas transmettre au système

structurel des efforts des actions qui n'ont pas été pris en compte dans les calculs.

d) Dans le cas d'interaction entre l'ossature et des éléments non structuraux rigides tels que les cloisons et les murs, il faut respecter les règles techniques et dimensionnelles définies à leur sujet et faire de telle sorte que la résistance du système structural ne soit pas affectée par leur présence.

İ

CHAPITRE IX

SITES D'EMPLACEMENT ET FONDATIONS

9.1- CLASSIFICATION DES SITES

La classification des sites est déterminée sur la base des paramètres géotechniques résultant de la reconnaissance des sols qui les constituent. Le règlement distingue 6 types de sites tels que définis autableau 9.1. Toutefois d'autres paramètres peuvent être corrélés avec ceux du Tableau 9.1.

	CLASSIFICATION DES SITI	ES		
CLASSE DES SITES	TYPE DE SOL	Résistance à la Pénétration Standard N ₆₀	Résistance du sol non drainé au cisaillement Su (Kpa)	Vitesse des ondes de cisaillement Vs (m/s)
S1 Sol rocheux	Rocher sain à moins de 3 m des fondations			Vs ≥ 760
S2 Sol ferme	Rocher altéré; sols cohérents très raides, sols pulvérulents très denses, marnes ou argiles très consolidés	Ns ≥ 50	Su ≥ 100	760> Vs ≥360
S3 Sol meuble	Sables et graviers moyennement compacts, argile moyennement raides	50> Ns ≥15	100> Su ≥50	360> Vs ≥180
200	Sols pulvérulents lâches	15> Ns	50> Su	180> Vs
S4 Sol mou	Tout Sol de profondeur de plus de 3 m ayant Teneur en eau W> 40%; Indice de plasticité PI > 20		25> Su	150> Vs
S5 Sol spécial	Sols à conditions exceptionnelles nécessitant une étude appropriée de leurs caractéristiques: 1. Les argiles ayant un PI > 75 et plus de 8 m d'épaisseur; 2. Les argiles raides de molles à moyennes dont l'épaisseur est supérieure à 30 m; 3. Les sols susceptibles d'être liquéfiables; 4. Les sols susceptibles d'affaissement sous des sollicitations sismiques; 5. Les sols avec grande teneur en matière organique sur une épaisseur de plus de 3 mètres.	Nécessite des études géotechniques		

Tableau 9.1: classification des sites.

9.2- LIQUEFACTION DES SOLS

- a) Les sollicitations sismiques ont tendance à densifier les sols granuleux, ce qui augmente rapidement la pression interstitielle de l'eau, entraînant une diminution rapide de la résistance. La perte totale de la résistance au cisaillement d'un sol saturé suite à une augmentation de la pression interstitielle est appelée liquéfaction.
- b) Il faut que le sol de fondation dans une zone sismique ne soit pas liquéfiable, dans le cas contraire, des mesures spéciales sont à prendre pour empêcher l'effet de la liquéfaction.

9.2.1- SOLS SUSCEPTIBLES DE LIQUEFACTION

Tous les sols ne sont pas susceptibles de se liquéfier.

- a) Paramètres
 - Les paramètres déterminant la liquéfaction des sols sont :
 - La granulométrie.
 - · La forme des grains.
 - · Le poids volumique du sol en place.
 - La contrainte effective, due essentiellement au poids propre du sol. Seuls les 20 premiers mètres sont généralement concernés
 - Tableau 9.1.
- b) Les sols susceptibles, à priori, de se liquéfier:
 - Les sables et limons

Avec:

- Un degré de saturation Sr ≈ 100%,
- Une granulométrie caractérisée par:
 - un coefficient d'uniformité Cu ≤15
 - et un diamètre 0.05mm < D50 < 1.5mm
- Les sols argileux fins

Avec:

- un diamètre D15 > 0.005m
- Une limite de liquidité LL≤35%.
- Une teneur en eau naturelle wn> 0.9LL
- Un indice de liquidité< 0.75
- Les sols sableux dont la courbe granulométrique s'inscrit dans le fuseau des solsà prioriliquéfiables.

9.2.2- EVALUATION DU POTENTIEL DE LIQUEFACTION

L'évaluation de la liquéfaction peut être basée soit sur les essais in situ, soit sur les essais de laboratoire.

1. Les essais de laboratoire :

Les essais qui peuvent être réalisés sont ceux qui reproduisent raisonnablement les conditions de sollicitations sismiques, ou au moins pour lesquels il existe suffisamment d'expérience pour corriger les résultats obtenus parmi ces essais, les essais cycliques triaxiaux, qu'ils soient à chargement axial, à

torsion ou à chargement latéral.

Les essais seront conduits selon les méthodes usuellement utilisées, et éprouvées par l'expérience.

Les résultats doivent en outre faire clairement apparaître l'évolution de la pression interstitielle, ainsi que les déformations au sein-de l'échantillon.

2. Critère de liquéfaction

Les contraintes causant la liquéfaction sont déterminées et comparées aux contraintes produites par le séisme.

La détermination de la contrainte de cisaillement engendrée par le séisme est déterminée par une méthode confirmée par l'expérience.

Sont considérés comme liquéfiables, sous l'action du séisme de calcul, les sols au sein desquels la valeur des contraintes de cisaillement engendrées par le séisme dépasse 75% de la valeur de la contrainte de cisaillement provoquant la liquéfaction, pour le nombre de cycle équivalents Nc. Le nombre de cycles équivalent est déterminéà l'aide des méthodes disponibles et confirmées par l'expérience.

3. Les essais in situ :

Les essais de pénétration in situ de type dynamique, essais SPT (standard pénétration test) ou statique peuvent être utilisés pour le diagnostic des sols liquéfiables, et tout autre essai pour lequel il existe des corrélations bien établies entre les indications de l'essai et la liquéfaction ou la non liquéfaction des sols.

9.3- STABILITE DES PENTES

9.3.1- PRINCIPES GENERAUX

- a) Sauf nécessité absolue aucun ouvrage ne doit être édifié au voisinage immédiat d'une pente reconnue instable. En cas de nécessité absolue, il est alors nécessaire de faire appel à un géotechnicien spécialisé.
- b) La stabilité des pentes naturelles ou artificielles doit être assurée sous l'action du séisme de calcul compte tenu des charges apportées par les ouvrages.
- c) L'étude de la stabilité peut être conduite:
 - Selon toute méthode scientifiquement établie et confirmée par l'expérience;
 - Ou par les méthodes statiques usuelles de la mécanique des sols en y intégrant deux forces d'inertie définies par:

 $FH = \alpha_H Q$

Dans le sens horizontal

 $FV = \pm \alpha_V Q$

Dans le sens vertical

Où:

Q: Le poids de l'élément de sol augmenté de la charge qui lui est appliquée et α_H et α_V sont les coefficients sismiques, avec $\alpha_V = 0.3\alpha_H$.

 $a_{\rm H}$: est exprimé en fonction de l'accélération nominale $a_{\rm n}$ et l'accélération g. Ses valeurs sont données dans le tableau 9.2

Site	a _H
S1 et S2	0.50 a _n /g
S3	0.45 a _r /g
S 4	0.40 a _n /g

Tableau 9.2 - Valeurs de α_H

La vérification de la stabilité doit être conduite pour les combinaisons suivantes:

+α_H et +a_H

-av et +aH

9.3.2- Caractéristiques Mécaniques Et Coefficients De Sécurité

Les paramètresà considérer dans le calcul de stabilité sont ceux obtenus dans les conditions non drainées.

Le coefficient de sécurité vis à vis de la stabilité sera pris égal à 1.

9.4- OUVRAGES DE SOUTENEMENT

9.4.1- PRINCIPES GENERAUX

Les efforts agissant sur les parois de soutènement sont déterminés par toute méthode scientifiquement établie et validée par l'expérience. A défaut, les méthodes statiques simplifiées présentées ci-dessous peuvent être utilisées.

L'utilisation des méthodes simplifiées tient compte des forces d'inertie résultantes de l'action dynamique du séisme par application de coefficients sismiques uniformes à l'ouvrage et au massif de terre retenu y compris les charges qui lui sont appliquées. Ces forces ont pour valeur:

- Dans le sens horizontal:

 $\mathbf{F}_{\mathbf{H}} = \alpha_{\mathbf{H}} \cdot \mathbf{Q}$

- Dans le sens vertical:

 $\mathbf{F}_{\mathbf{V}} = \mathbf{\alpha}_{\mathbf{V}} \cdot \mathbf{Q}$

Avec: $\alpha_V = 0.3\alpha_H$ et $\alpha_H = K$. t. (a_n/g)

Où:

an: Accélération nominale.

t : Coefficient de correction topographique du site au droit du mur pris égal à 1.2

K est égal à 1 dans le cas de poussée active et à 1.2 dans le cas de poussée passive.

Q : poids des parties de l'infrastructure et du massif retenu y compris les charges d'exploitation présentes sur ce dernier.

9.4.2- METHODE DE CALCUL SIMPLIFIEE

9.4.2.1- CAS DES TERRAINS PULVERULENTS($c = 0, \phi \neq 0$)

Poussée Dynamique Active :

Les données géométriques et géotechniques prises en compte dans les calculs sont précisées ci-dessous. La poussée dynamique active est donnée par la méthode dite de Mononobe-Okabe et s'exprime comme

$$P_{ad} = \frac{1}{2} \cdot \gamma H^{2} (1 \pm \alpha v) \cdot K_{ad}$$

γ: Poids spécifique du sol humide non déjaugé.

φ: Angle de frottement interne du terrain soutenu.

H: Hauteur du mur.

a: Fruit interne du mur.

β: Angle du terre plein avec l'horizontale.

α_H: Coefficient sismique horizontal.

α_V: Coefficient sismique vertical.

δ : Angle de frottement terrain-écran du mur.

 $\theta = arctg[\alpha_H/(1\pm\alpha_V)]$: L'angle que fait avec la verticale, la résultante des forces massiques appliquées au terrain situé derrière l'écran.

Kad: est le coefficient de poussée dynamique active donné par la relation :

$$K_{ad} = \frac{\cos^{2}(\varphi - \theta - \alpha)}{\cos \theta \cdot \cos^{2}\alpha \cdot \cos(\delta + \alpha + \theta)} \left[1 + \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \beta - \theta)}{\sin(\alpha - \beta) \cdot \sin(\delta + \alpha + \theta)}} \right]$$

La poussée P_{ad} se compose de la poussée active dans le cas statique P_a et l'incrément du au séisme ΔP_{adyn} . Soit: $P_{ad} = P_a + \Delta P_{adyn}$

Les composantes P_a et ΔP_{adyn} sont appliquées respectivement à H/3 et à H/2 au -dessus de la base du mur.

Poussée dynamique passive :

La poussée passive est prise égale à: $P_{pd} = (1/2) \cdot g \cdot H^2$, agissant horizontalement sur l'écran interne du mur à H/3 au-dessus de la base.

Poussée due à une surcharge uniforme

Lorsque le terre plein supporte une surcharge uniforme d'intensité q la poussée dynamique active totale s'écrit comme : $P_{ad} = (q.H/cos\beta).(1 \pm \alpha_V) K_{ad}$

Il est admis que cette poussée s'exerce à mi-hauteur du mur.

9.4.2.2- Cas général des sols $(c \neq 0, \phi \neq 0)$

Il s'agit de la méthode développée par Prakash qui donne la poussée dynamique active totale comme:

$Pdy = \gamma H^{2}(Nag)_{dy} + qH.(Naq)_{dy} \cdot cH.(Nac)_{dy}$

Dans laquelle:

(Nag)_{dy}, (Naq)_{dy}, (Nac)_{dy} sont les coefficients de poussée dynamique

H: Hauteur du mur

y: Poids spécifique du sol retenu

q : Surcharge sur le terre plein

c: Cohésion du terrain.

9.4.3- VERIFICATION DE LA STABILITÉ

Les vérifications aux états limites de glissement sous la fondation sont à effectuer avec un coefficient de sécurité de 1.2.

Le poinçonnement de la fondation est vérifié en prenant un coefficient de sécurité de 1.5.

9.5- CALCUL DES FONDATIONS

9.5.1- FONDATIONS SUPERFICIELLES

La fondation superficielle doit être dimensionnée en tenant compte des sollicitations permanentes (poids mort, charges permanentes, etc..) et des sollicitations dynamiques provenant de la structure. Les méthodes de dimensionnement sont celles usuellement utilisées dans les conditions de non séisme.

La fondation superficielle doit faire l'objet de vérification vis à vis de la portance et du tassement du sol et de la rotation de la semelle. Les coefficients de sécurité applicables sont de:

- 1.5 vis à vis de la résistance ultime
- 1.2 vis à vis du glissement

Le tassement et la rotation de la semelle doivent être inférieurs aux valeurs spécifiées par le maître d'ouvrage dans le cahier de charges.

9.5.2- FONDATIONS PROFONDES

9.5.2.1- PRINCIPES GENERAUX

Toute perturbation de l'état d'équilibre des terrains traversés par la fondation, pendant et après les vibrations, doit être prise en compte dans le dimensionnement de la fondation.

Ces perturbations peuvent correspondre à une perte de résistance, à la liquéfaction d'une zone du sol, à un tassement accompagné de frottement négatif ou encore au développement de poussées latérales sur le fût de la fondation.

Tous les types de fondations profondes doivent être vérifiés en prenant en compte les charges verticales, y compris celles engendré es par l'action sismique.

9.5.2.2- METHODES DE CALCUL

a) Méthode générale :

- Les actions transmises par la structure à sa fondation sont celles résultant de l'action dynamique sur la structure.
- Toute méthode scientifiquement établie et validée par l'expérience peut être utilisée après justification.
- A défaut, la méthode simplifiée ci-dessous peut être utilisée dans la limite des conditions de validité.
 - La condition de non-résonance de la fondation doit être vérifiée.
 - -Tous les types de fondation profonde doivent être vérifiés au flambement.

b) Méthode simplifiée :

La méthode simplifiée est valide si les conditions ci-dessous sont vérifiées simultanément:

- Les fondations profondes sont suffisamment flexibles dans le plan horizontal pour qu'on puisse considérer que leur déformée est la même que celle du sol.
- La section totale des fondations profondes doit être au plus égale à 5% de l'emprise qu'elle délimite.
- La rigidification de la tête des fondations doit être assurée pour uniformiser leur déplacement.
- La structure doit être suffisamment encastrée dans le sol pour que le déplacement de sa base soit pris égal à celui du sol situé dans son emprise.

c) Les calculs :

- -La structure est soumise aux actions de calcul correspondant au site.
- -Les calculs sont basés sur le premier mode de vibration de la fondation compte tenu de sa liaison avec la structure. La méthode consiste à déterminer le déplacement maximal en tête de la fondation.
- Si la condition précédente n'est pas satisfaite, les fondations doivent être calculées par toute méthode d'interaction sol structure scientifiquement établie.

d) Le coefficient de sécurité :

Le dimensionnement des fondations profondes doit tenir compte des coefficients de sécurité suivants:

- vis à vis du terme de pointe:

Pour les pieux forés: 2

Pour les pieux battus: 1.5

- vis à vis du frottement latéral: 1.5 et 2 s'il s'agit de pieux flottants.

Les investigations menées à l'échelle de ce contexte géodynamique complexe ont permis de définir le cadre géologique et structure des principaux domaines sismotectoniques et des failles d'échelle crustale qui constitueront les zones sources d'activité sismique. Ces zones sources sont délimitées par les paramètres géométriques et cinématiques des failles qui affleurent en surface ou présentes en profondeur.

LEXIQUE

RPS: Règlement de Construction Parasismique

PS : Performance sismique

ND : Niveau de ductilité V : Facteur de vitesse

K : Facteur de réduction de la force sismique de calcul, ou coefficient de ductilité

Z: Coefficient d'amortissement

Gs: Le coefficient de sécurité à adopter ait pour valeur = 1.15

H2: Hauteur du bloc

A_{max}: Accélération maximale du sol

V_{max}: Vitesse maximale du sol

T : Période

F= v SDIW/K : la réponse élastique

v: Coefficient de vitesse de zones

S: Coefficient du site.

D: Facteur d'amplification dynamique

I : Coefficient de priorité

K: Facteur de comportement

$W = G + \psi Q$: la charge prise en poids de la structure

G: La totalité des charges permanentes

Q: Fraction q des charges d'exploitation

ψ : Coefficient

$F_n = (F - Ft) (W_n h_n / \Sigma (W_i h_i))$: Force horizontale

F_n: La force horizontale de calcul, appliquée au niveau n.

W_n: La charge totale au niveau n.

h_n: La hauteur du niveau considéré à partir du sol

T: La période fondamentale de la structure

T=0.09H/(L)^{0.5}: La période fondamentale

H: La hauteur totale du bâtiment exprimée en mètre

L : La longueur du mur.

T=1.8 (mH/EI) (Pour les bâtiments assimilés à des consoles)

M : La masse par unité de longueur du bâfiment

H: La hauteur totale

EI: La rigidité flexionnelle

T=2N(N+1)/(M/k)^{0.5} (Pour les bâtiments en portiques avec remplissage)

N: nombre d'étages

M: La masse

k = kp + kr : la rigidité par niveau

kp : La rigidité littérale du portique

 $kp = 12.\Sigma.(Ec.Ic) / h3 (L+2 \lambda)$

 $\lambda = LS.Ic/hS.I$

Σ sur le nombre de travées

kr : La rigidité latérale d'un panneau

 $kr = 0.045.m.(Er. e cos^2 \alpha)$

m : nombre de travées

Er : module d'élasticité e : épaisseur du panneau

α : est l'angle de la diagonale avec l'horizontale du panneau

 $e_1 = 0.5 e + 0.05 L$: Effet de torsion $e_2 = 0.05 L$

e : Distance entre le centre de rigidité et le centre des masses dans la direction perpendiculaire du séisme.

L : Dimension horizontale du plancher dans la direction perpendiculaire à l'action sismique F

Fp = v I Cp Wp : La force latérale de calcul

Fp : Effort latéral agissant sur l'élément réparti selon la distribution des masses de l'élément considéré.

C p : Coefficient de force horizontal

Wp : Poids de l'élément

$Sc = G+E+0.3 N + \psi Q$: Combinaison d'actions

G: Le poids mort et charges permanentes de longue durée

m 19 20 30

The state of the s

E: Effets du séisme

N: Action de la neige

Q: Charges d'exploitation

Ψ: Facteur d'accompagnement

$N \leq 0.10B~f_{c28}$

N: Effort axial

B : L'aire de la section de l'élément

f_{c28}: Résistance caractéristique

 $s = Min (8 \Phi_L; 24 \Phi_T; 0.25 h; 20 cm) : espacement$

Φ_L: Diamètre des barres longitudinales

Φ_T : Diamètre des barres transversales

ANNEXE

Catalogue des Vitesses et des Zones de Vitesses et des Accélérations au niveau de chaque commune

PROVINCE D'OUAD EDDAHAB

PROVINCE	COMMUNE	VITESSE		
OUAD EDDAHAB	BIR ANZARANE	5	0	0
OUAD EDDAHAB	DAKHLA	5	0.	1
OUAD EDDAHAB	EL ARGOUB	5	0	0
OUAD EDDAHAB	GLEIBAT EL FOULA	5	0	0
OUAD EDDAHAB	IMLILI	5	0	0.
OUAD EDDAHAB	MIJIK	5	0	0
OUAD EDDAHAB	OUM DREYGA	5	0	0

PROVINCE D'AOUSSERD

PROVINCE	COMMUNE	VITESSE		77.776.77
AOUSSERD	AGHOUINITE	5	0	· o
AOUSSERD	AOUSSERD	5	0	0
AOUSSERD	BIR GANDOUZ	5	0	0
AOUSSERD	LAGOUIRA	0	0	1
AOUSSERD	TICHLA	5	0	0
AOUSSERD	ZOUG	٠5	0	0
ASSA-ZAG	AL MAHBASS	5	0	0
ASSA-ZAG	AOUINT LAHNA .	7	1	1
ASSA-ZAG	AOUINT YGHOMANE	7	1	1
ASSA-ZAG	ASSA	5	0	0
ASSA-ZAG	LABOUIRAT	5	0	1
ASSA-ZAG	TOUIZGUI	5	0	0
ASSA-ZAG	ZAG	5	Ó	0

PROVINCE DE LAAYOUNE

PROVINCE	COMMUNE	VITESSE	rasi sisting Filongsi	
LAAYOUNE	AKHFENNIR	7	1	1
LAAYOUNE	BOUKRAA	5	0	0
LAAYOUNE	DAOURA	5	0	1.
LAAYOUNE	DCHEIRA	5	0	0
LAAYOUNE	EL HAGOUNIA	5	0	1
LAAYOUNE	EL MARSA	5	. 0	1
LAAYOUNE	FOUM EL OUAD	5	0	1
LAAYOUNE	LAAYOUNE	5	0	0
LAAYOUNE	TAH	7	1	1
LAAYOUNE	TARFAYA	7	1	1

PROVINCE DEBOUJDOUR

PROVINCE.	COMMUNE	VITESSE		
BOUJDOUR	BOUJDOUR	5 ·	0	1
BOUJDOUR	GUELTAT ZEMMOUR	5	0	0
BOUJDOUR	JRAIFIA	5	0	0
BOUJDOUR	LAMSSID	5	0,	0

PROVINCE D'ESSEMARA

PROVINCE	COMMUNE	VITESSE		
ESSEMARA	AMGALA	55		0
ESSEMARA	ESŞEMARA	. 5	Q.	O,
ESSEMARA	HAOUZA	. 5	0.	0
ESSEMARA	JDIRIYA	. 5	0	0
ESSEMARA	SIDI AHMED LAAROUSSI	5	0	0
ESSEMARA	TIFARITI	5	0	O.

PROVINCE DE GUELMIM

PROVINCE	COMMUNE	VITESSE		
GUELMIM	ABAYNOU	7	1	1
GUELMIM	ADAY	7 7	1	1.
GUELMIM	AFERKAT	. 7	1	1.
GUELMIM	AIT BOUFOULEN	7	1	1
GUELMIM	AMTDI	· . 7	1	
GUELMIM	ASRIR	. , 7	1	1. 1.
GUELMIM	BOUIZAKARNE	7	1 .	1
GUELMIM	ECHATEA EL ABIED		1	1
GUELMIM	FASK	7	1	1
GUELMIM	GUELMIM	7	1	1
GUELMIM	IFRANE ATLAS SAGHIR	7	1,	1
GUELMIM	LABYAR	. 7	1	1
GUELMIM	LAQSABI TAGOUST	. 7	1	1,5
GUELMIM	RAS OUMLIL	7	1	1,
GUELMIM	TAGANTE	7	1	1
GUELMIM	TAGHJIJT	5	0 -	.1
GUELMIM	TALIOUINE ASSAKA	7	1 - 1	2
GUELMIM	TARGA WASSAY	. 7	1	2
GUELMIM	TIGLIT	7	1	1
GUELMIM	TIMOULAY	7	1	1,

PROVINCE DE TAN-TAN

PROVINCE	COMMUNE	VITESSE		
TAN-TAN	ABTEH	7	1	1
TAN-TAN	BEN KHLIL	7	1	1
TAN-TAN	СНВІКА	7	1	1
TAN-TAN	EL OUATIA	5	0	1 .
TAN-TAN	MSIED'	7.	1	1
TAN-TAN	TAN-TAN	7	1	1 1
TAN-TAN	TILEMZOUN	7	1	11

PROVINCE DE TATA

Pagy/fice:	COMMUNE	VITESSE		
TATA	ADIS	7	1	0
TATA	AGUINANE	10	2	2
. TATA	AIT OUABELLI	- 5	0	0
TATA	AKKA	5	0	0
TATA	AKKA IGHANE	7	1	1
TATA	ALLOUGOUM	7	1	1
TATA	FAM EL HISN	7	1	1,
TATA	FOUMZGUID	7	1	1
TATA	IBN YACOUB	7	1	2
TATA	ISSAFEN	10	2	2
TATA	KASBAT SIDI ABDALLAH BEN M'BAREK	5	0	1
TATA	OUM EL GUERDANE	- 5	0	0
TATA	TAGMOUT	7	1	2 *
TATA	TAMANARTE	5	0	0
TATA	TATA	.: 7	1	1
TATA	TIGZMERTE	. 7	1	1
TATA	TISSINT	5	0	1
TATA	TIZAGHTE	7	1	1
TATA	TIZOUNINE	5	< 0	.0 2
TATA	TLITE .	7	1	2

PROVINCE D'AGADIR IDA OU TANANE

PROVINCE .	COMMUNE	VITESSE	-15 m	
AGADIR IDA OU TANANE	AGADIR	13	3	4
AGADIR IDA OU TANANE	AMSKROUD	13	3	4
AGADIR IDA OU TANANE	ANZA	13	3	. 4
AGADIR IDA OU TANANE	AOURIR	13	3	4
AGADIR IDA OU TANANE	AQESRI	13	3	4
AGADIR IDA OU TANANE	AZIAR	10	2	3
AGADIR IDA OU TANANE	BENSERGAO	13	3	4
AGADIR IDA OU TANANE	DCHEIRA EL JIHADIA	13	3	3
AGADIR IDA OU TANANE	DRARGUA	13	3	4
AGADIR IDA OU TANANE	IDMINE	13	3	4
AGADIR IDA OU TANANE	IMMOUZZER	13	3	4
AGÁDIR IDA OU TANANE	IMSOUANE	10	2	3
AGADIR IDA OU TANANE	TADRART	10	2	3
AGADIR IDA OU TANANE	TAGHAZOUT	13	. 3	4
AGADIR IDA OU TANANE	TAMRI	13	3	3
AGADIR IDA OU TANANE	TIQQI	10	2	3

PROVINCE DE CHTOUKA AIT BAHA

PROVINCE	COMMUNE	VITESSE		
CHTOUKA AIT BAHA	AIT AMIRA	13	3	3
CHTOUKA AIT BAHA	AIT BAHA	10	2	3
CHTOUKA AIT BAHA	AIT MILK	10	2	2
CHTOUKA AIT BAHA	AIT MZAL	10	2	3
CHTOUKA AIT BAHA	AIT OUADRIM	10	2	3
CHTOUKA AIT BAHA	AOUGUENZ	10	2	2
CHTOUKA AIT BAHA	BELFAA	13	3	2
CHTOUKA AIT BAHA	BIOUGRA	13	3	3
CHTOUKA AIT BAHA	HILALA	10	2	3
CHTOUKA AIT BAHA	IDA OU GNIDIF	10	2	2
CHTOUKA AIT BAHA	IMI MQOURN	13	3	3
CHTOUKA AIT BAHA	INCHADEN	13	3	3
CHTOUKA AIT BAHA	MASSA	10	2	2
CHTOUKA AIT BAHA	OUAD ESSAFA	13	3	3
CHTOUKA AIT BAHA	SIDI ABDALLAH EL BOUCHOUARI	10	2	2
CHTOUKA AIT BAHA	SIDI BIBI	13	3	3
CHTOUKA AIT BAHA	SIDI BOUSHAB	13	3	3
CHTOUKA AIT BAHA	SIDI OUASSAY	13	3	3
CHTOUKA AIT BAHA	TANALT	10	2	2
CHTOUKA AIT BAHA	TARGA NTOUCHKA	10	2	2
CHTOUKA AIT BAHA	TASSEGDELT	10	2	3
CHTOUKA AIT BAHA	TIZI NTAKOUCHT	10	. 2	3

PROVINCE D'INEZGANE AIT MELLOUL

PROVINCE	commune 2	VITESŠE		
INEZGANE AFT MELLOUL	AIT MELLOUL	13	3	3
INEZGANE AIT MELLOUL	INEZGANE	13	3	3
INEZGANE AIT MELLOUL	LGLIAA	13	3	3
INEZGANE AIT MELLOUL	OULAD DAHOU	13	3	3
INEZGANE AIT MELLOUL	TEMSIA	13	3	3
INEZGANE AIT MELLOUL	TłKOUINE			

PROVINCE DE TAROUDANNT

PROVINCE	COMMUNE	VITESSE		
TAROUDANNT	ADAR	10 .	2	2
TAROUDANNT	AGADIR MELLOUL	10	2	2
TAROUDANNT	AHL RAMEL	13	3	3
TAROUDANNT	AHL TIFNOUTE	. 7	1	2
TAROUDANNT	AHMAR LAGLALCHA	10	2	3
TAROUDANNT	AIT ABDALLAH	10	2	2
TAROUDANNT	AIT IAAZA	10	2	3
TAROUDANNT	AIT IGAS	10	2	3
TAROUDANNT	AIT MAKHLOUF	10	2	3
TAROUDĄNNT	AMALOU	10	2	3
TAROUDANNT	AOULOUZ	10	2	2
TAROUDANNT	ARAZANE	10	2	2
TAROUDANNT	ARGANA	10 .	2	3 .
TAROUDANNT	ASKAOUEN	7	1	2
TAROUDANNT	ASSADS	10	2	3
TAROUDANNT	ASSAISSE	7	1	2
TAROUDANNT	ASSAKI	10	2	2
TAROUDANNT	AZAGHAR N'IRS	10	2	2
TAROUDANNT	AZRAR	10	. 2	2
TAROUDANNT	BIGOUDINE	10	2	3
TAROUDANNT	BOUNRAR	10	2	3
TAROUDANNT	EDDIR	13	3	3
TAROUDANNT	EL FAID	10	2	2
TAROUDANNT	EL GUERDANE	10	2	3
TAROUDANNT	EL KOUDIA EL BEIDA	13	3	3
TAROUDANNT	FREIJA	10	2	3
TAROUDANNT	IDA OU GAILAL	10	, 2	2
TAROUDANNT	IDA OU MOUMEN	10	2	3
TAROUDANNT	IDA OUGOUMMAD	10	2	2
TAROUDANNT	IGHERM	10	2	2
TAROUDANNT	IGLI	10	2	2
TAROUDANNT	IGOUDAR MNABHA	10	2	2
TAROUDANNT	IGUIDI	7	1	2
TAROUDANNT	IMAOUEN	10	2	2
TAROUDANNT	IMI N'TAYART	10	2	2
TAROUDANNT	IMILMAISS	10	2	2
TAROUDANNT	IMOULASS	10	2 .	3
TAROUDANNT	ISSEN	13	3	3
TÄROUDANNT	LAGFIFAT	13	3 ·	3

TAROUDANNT	LAKHNAFIF	10	2	3
TAROUDANNT	LAMHADI	10	2	3
TAROUDANNT	LAMHARA	10	2	2
TAROUDANNT	LAMNIZLA	10	2	3
TAROUDANNT	MACHRAA EL AIN	10	2	3
TAROUDANNT	NIHIT	10	2	3 .
TAROUDANNT	OUALQADI	10	2	3
TAROUDANNT	OULAD AISSA	10	2	2
TAROUDANNT	OULAD BERHIL	10 .	2	2
TAROUDANNT	OULAD TEIMA	13	3	3
TAROUDANNT	OUNEINE	i 0	2	2
TAROUDANNT	OUZIOUA	7	1	2
TAROUDANNT	SIDI ABDALLAH OU SAID	10	2	2
TAROUDANNT	SIDI AHMED OU ABDELLAH	10	2	3
TAROUDANNT	SIDI AHMED OU AMAR	13	3	3
TAROUDANNT	SIDI BOAAL	10	2	2
TAROUDANNT	* SIDI BORJA	10	2	3
TAROUDANNT	SIDI BOUMOUSSA	13	3	3
TAROUDANNT	SIDI DAHMANE	10	2	3
TAROUDANNT	SIDI HSAINE	7	1	2
TAROUDANNT	SIDI MOUSSA LHAMRI	13	3	3
TAROUDANNT	SIDI MZAL	10	2	2
TAROUDANNT	SIDI OUAAZIZ	10	2	2
TAROUDANNT	TABIA	10	2	3
TAROUDANNT	TAFINGOULT	10	2	2
TAROUDANNT	TAFRAOUTEN	10	2	3
TAROUDANNT	TALGJOUNT	10	2	2
TAROUDANNT	TALIOUINE	7	1	2
TAROUDANNT	TALMAKANTE	10	2	3
TAROUDANNT	TAMALOUKTE	10	2	3
TAROUDANNT	TAOUYALTE	7	1	2
TAROUDANNT	TAROUDANNT	10	2	3
TAROUDANNT	TASSOUSFI	10	2	2
TAROUDANNT	TATAOUTE	10	2	3
TAROUDANNT	TAZEMMOURT	10	2	3
TAROUDANNT	TIDSI NISSENDALENE	10	2	3
TAROUDANNT	TIGOUGA	10	2	2
TAROUDANNT	TINDINE	10	2	3
TAROUDANNT	TINZART	10	2	2
TAROUDANNT	TIOUT	10	2	3
TAROUDANNT	TISFANE	10	2	3
TAROUDANNT	TISRASSE	10	2	2
TAROUDANNT	TIZGAZAOUINE	10	2	2
TARQUDANNT	TIZI N'TEST	10	2	2,

TAROUDANNT	TOUBKAL	7	1	2
TAROUDANNT	TOUFELAAZT	10	2	3
TAROUDANNT	TOUGHMART	10	2	2
TAROUDANNT	TOUMLILINE	10	2	2
TAROUDANNT	ZAGMOUZEN	7	. 1	. 2
TAROUDANNT	ZAOUIAT SIDI TAHAR	10	2	3

PROVINCE DE TIZNIT

PROVINCE	COMMUNE	VITESSE		1989 (T. 748) 1
TIZNIT	AFELLA IGHIR	7	1	1
TIZNIT	AIT ERKHA	7	1	1 1
TIZNIT	AIT ISSAFEN	. 7	1. •	. 2
TIZNIT	AIT OUAFQA	7	1	1
TIZNIT	AMMELNE	10	2	2
TIZNIT	ANFEG	7	1.	1
TIZNIT	ANZI	10	2	. 2
TIZNIT	ARBAA AIT ABDALLAH	7	1	2
TIZNIT	ARBAA AIT AHMED	10	2	2
TIZNIT	ARBAA RASMOUKA	10	2	2
TIZNIT	ARBAA SAHEL	10	2	2
TIZNIT	BOUNAAMANE	7	1	2
TIZNIT	BOUTROUCH	7	1	1
TIZNIT	EL MAADER EL KABIR	10	2	2
TIZNIT	IBDAR	7	1	1
TIZNIT	IDA OU GOUGMAR	7	1	. 1
TIZNIT	IMI N'FAST	7	1	2
TIZNIT	IRIGH N'TAHALA	10	2	2
TIZNIT	LAKHSAS	7	1	2
TIZNIT	MESTI	7	1	2
TIZNIT	MIRLEFT	7	1	2
TIZNIT	OUIJJANE	10	2	2
TIZNIT	REGGADA	. 7	1	2
TIZNIT	SBOUYA	7	1	2
TIZNIT	SEBT ENNABOUR	7	1	1
TIZNIT	SIDI ABDALLAH OU BELAID	7	1	1
TIZNIT	SIDI AHMED OU MOUSSA	7	1	1
TIZNIT	SIDI BOUABDELLI	7	1	2
TIZNIT	SIDI H'SAINE OU ALI	7	1 ,	2
TIZNIT	SIDI IFNI	7	1	2
TIZNIT	SIDI M'BARK	7	1	2
TIZNIT	TAFRAOUT	10	2	2
TIZNIT	TAFRAOUT EL MOULOUD	10	2 -	2
TIZNIT	TANGARFA	7	1	2

TIZNIT	TARSOUAT	7	1	1
TIZNIT	TASSRIRT	7	1	2
TIZNIT	TIGHIRT	7	1	1
TIZNIT	TIGHMI	10	2	2
TIZNIT	TIOUGHZA	7	1	2
TIZNIT	TIZNIT	10	2.	2
TIZNIT	TIZOUGHRANE	10	2	1
TIZNIT	TNINE ADAY	10	2	2
TIZNIT	TNINE AGLOU	10	2	2
TIZNIT	TNINE AMELLOU	7	1	2

PROVINCE D'OUARZAZATE

PROVINCE	COMMUNE	VITESSE			
OUARZAZATE	AIT EL FARSI	7	1	1 '	
OUARZAZATE	AIT OUASSIF	7	1	2	
OUARZAZATE	AIT SEDRATE JBEL EL OULIA	7	1	2	
OUARZAZATE	AIT SEDRATE JBEL SOUFLA	7	1 .	2	
OUARZAZATE	AIT SEDRATE SAHL CHARKIA	7	1	2	
OUARZAZATE	AIT SEDRATE SAHL EL GHARBIA	7	1	2	
QUARZAZATE	AIT YOUL	7	1	2	
OUARZ.AZATE	AIT ZINEB	7	1	2	
OUARZAZATE	AMERZGANE	7	1	2	
OUARZAZATE	AZNAGUEN	10	2	2	l
OUARZAZATE	BOUMALNE DADES	7	1	2	
OUARZAZATE	GHASSATE	7	1	2	
OUARZAZATE	IDELSANE	7	1	2	
OUARZAZATE	IGHIL N'OUMGOUN	7	1	2	١
OUARZAZATE	IGHREM N'OUGDAL	10	2	2	١
OUARZAZATE	IKNIOUEN	7	1	1	l
OUARZAZATE	IMI N'OULAOUNE	7	1	2	
OUARZAZATE	IMIDER	7	1	2	1
OUARZAZATE	KALAAT M'GOUNA	7	1	. 2	١
OUARZAZATE	KHOUZAMA	7	1	2	١
OUARZAZATE	M'SEMRIR	7	1	2	
QUARZAZATE	OUAKLIM	7	1	2	
OUARZAZATE	OUARZAZATE	7	1	2	١
OUARZAZATE	OUISSELSATE	7	1	2	1
OUARZAZATE	SIROUA	7	1	2	
OUARZAZATE	SKOURA AHL EL OUST	7	1	2	
OUARZAZATE	SOUK LAKHMISS DADES	7] 1	2	

OUARZAZATE	TAGHZOUTE N'AIT ATTA	7	1	2
OUARZAZATE	TARMIGT	7	1	2
OUARZAZATE	TAZNAKHT	7	1	2
OUARZAZATE	TELOUET	10	2	2
OUARZAZATE	TIDLI	7	1	2
OUARZAZATE	TILMI	7	1	2
OUARZAZATE	TINGHIR	7	1	2
OUARZAZATE	TOUDGHA EL OULIA	7	1	2
OUARZAZATE	TOUDGHA ESSOUFLA	7	1	2
OUARZAZATE	TOUNDOUTE	7	1	2

PROVINCE DE ZAGORA

PROVINCE.	COMMUNE	VITESSE		AMPA, yes
ZAGORA	AFELLA N'DRA	7	1	2
ZAGORA	AFRA	7	1	1
ZAGORA	AGDZ	7	1	2
ZAGORA	AIT BOUDAOUD	7	1	1
ZAGORA	AIT OUALLAL	7	1	1
ZAGORA	BLEIDA	7	1	1
ZAGORA	BNI ZOLI	7	1	1
ZAGORA	BOUZEROUAL	7	1	1.
ZAGORA	ERROUHA	7	1	1
ZAGORA	FEZOUATA	7	1 1	1
ZAGORA	KTAOUA	5	0	1
ZAGORA	MEZGUITA	7	1	2
ZAGORA	M'HAMID EL GHIZLANE	5	0	1
ZAGORA	N'KOB	7	1 "	1
ZAGORA	OULAD YAHYA LAGRAIRE	7	1	1
ZAGORA	TAFTECHNA	7	1	
ZAGORA	TAGHBALTE	7	1	1 1
ZAGORA	TAGOUNITE	7	1	1
ZAGORA	TAMEGROUTE	7	1	1
ZAGORA	TAMEZMOUTE	7	1	1
ZAGORA	TANSIFTE	7	1	2
ZAGORA	TAZARINE	7	1	1
ZAGORA	TERNATA	7	1 1	1 1
ZAGORA	TINZOULINE	7	1 1	1
ZAGORA	ZAGORA	7	1	1

PROVINCE DE KENITRA

PROVINCE	COMMUNE	VITESSE	ZONE SIBMIQUZ EN VITESSE	ZOME BISKAIGUS EN ACCELERATION
KENITRA	AMEUR SEFLIA	10	2	2
KENITRA	ARBAOUA	13	3	2
KENITRA	AZGHAR	10	2	2
KENITRA	BAHHARA OULAD AYAD	13	3	2
KENITRA	BEN MANSOUR	10	2	2
KENITRA	BENI MALEK	10	2	2
KENITRA	BOUMAIZ	10	2	2
KENITRA	CHOUAFAA	13	3	3
KENITRA	DAR BEL AMRI	10	2	2
KENITRA	ADDADA	10	2	2
KENITRA	KARIAT BEN AOUDA	10	2	2
KENITRA	KCEIBYA	10	2	2
KENITRA	KENITRA MAAMOURA	10	2	2
KENITRA	KENITRA SAKNIA	10	2	2
KENITRA	LALLA MIMOUNA	13	3	2
KENITRA	MEHDIA	10	2	2
KENITRA	MNASRA	10	2	2
KENITRA	MOGRANE	10	2	2
KENITRA	MOULAY BOUSSELHAM	13	3	3
KENITRA	MSAADA	10	2	2
KENITRA	OUAD EL MAKHAZINE	13	3	2
KENITRA	OULAD BEN HAMMADI	10	2	,2
KENITRA	OULAD H'CINE	10	2	2
KENITRA	QULAD SLAMA	10	2	2
KENITRA	SFAFAA	10	2	2
KENITRA	SIDI ALLAL TAZI	10	2	2
KENITRA	SIDI BOUBKER EL HAJ	13	3	2
KENITRA	SIDI MOHAMED LAHMAR	10	2	2
KENITRA	SIDI SLIMANE	10	2	2
KENITRA	SIDI TAIBI	10	2	2
KENITRA	SIDI YAHYA EL GHARB	10	2	2
KENITRA	SOUK ARBAA	10	2.	2
KENITRA	SOUK TLET EL GHARB	10	2	2

PROVINCE DE SIDI KACEM

PRÓVINCE	COMMUNE	VITESSE		
SIDI KACEM	AIN DFALI	10	2	2
SIDI KACEM	AL HAOUAFATE	10	2	2
SIDI KACEM	BAB TIOUKA	10	2	2
SIDI KACEM	BIR TALEB	10	2	2
SIDI KACEM	BNI OUAL	10	2	2
SIDI KACEM	BNI QOLLA	10	2	2
SIDI KACEM	CHBANATE	10	2	2
SIDI KACEM	DAR GUEDDARI	10	2	2
SIDI KACEM	DAR LAASLOUJI	10	2	2
SIDI KACEM	ERMILATE	10	2	2
SIDI KACEM	HAD KOURT	10	2	2
SIDI KACEM	JORF EL MELHA	10	2	2
SIDI KACEM	KHNICHET	10	2	2
SIDI KACEM	LAMJAARA	10	2	2
SIDI KACEM	LAMRABIH	10	2	2
SIDI KACEM	MASMOUDA	10	2	2
SIDI KACEM	MECHRAA BEL KSIRI	10	2	2
SIDI KACEM	MOULAY ABDELKADER	10	2	2
SIDI KACEM	MZEFROUNE	13	3	2
SIDI KACEM	NOUIRATE	10	2	2
SIDI KACEM	OUEZZANE	13	3	2
SIDI KACEM	OULAD NOUEL	10	2	2
SIDI KACEM	OUNNANA	10	2	2
SIDI KACEM	SEFSAF	10	2	2
SIDI KACEM	SELFAT	10	2	2
SIDI KACEM	SIDI AHMED BEN AISSA	10	2 -	2
SIDI KACEM	SIDI AHMED CHERIF	10	2	2
SIDI KACEM	SIDI AL KAMEL	10	2	2
SIDI KACEM	SIDI AMEUR EL HADI	13	3	2
SIDI KACEM	SIDI AZZOUZ	10	2	2
SIDI KACEM	SIDI BOUSBER	10	2	2
SIDI KACEM	SIDI KACEM	10	2	2
SIDI KACEM	SIDI M'HAMED CHELH	10	2	2
SIDI KACEM	SIDI REDOUANE	10	2	2
SIDI KACEM	TAOUGHILT	10	A1	2
SIDI KACEM	TEKNA	10	2	2
SIDI KACEM	TEROUAL	10	2	2
SIDI KACEM	ZAGOTTA	10	2	2
SIDI KACEM	ZGHIRA	10	2	2
SIDI KACEM	ZIRARA	10	2	2

PROVINCE DE BEN SLIMANE

PROVINCE	COMMUNE	VITESSE		
BEN SLIMANE	AHLAF	7	1	٠ 1
BEN SLIMANE	AIN TIZGHA	10	2	1
BEN SLIMANE	BEN SLIMANE	10	2	1
BEN SLIMANE	BIR ENNASR	7	1	1
BEN SLIMANE	BNI YAKHLEF	10	2	2
BEN SLIMANE	BOUZNIKA	10	2 ·	2
BEN SLIMANE	EL MANSOURIA	10	2 .	2
BEN SLIMANE	FDALATE	10	2	1
BEN SLIMANE	MELLILA	7	1	1
BEN SLIMANE	MOUALINE EL GHABA	10	2	1
BEN SLIMANE	MOUALINE EL OUAD	10	2	1
BEN SLIMANE	OULAD ALI TOUALAA	7	1	1
BEN SLIMANE	OULAD YAHYA LOUTA	10	2	1
BEN SLIMANE	RDADNA OULAD MALEK	7	1	1
BEN SLIMANE	SIDI BETTACHE	7	1	1
BEN SLIMANE	SIDI KHDIM	10	2	2
BEN SLIMANE	SIDI MOUSSA BEN ALI	10	2	1
BEN SLIMANE	SIDI MOUSSA EL MAJDOUB	10	2	2
BEN SLIMANE	ZIAIDA	7	1	1

PROVINCE DE KHOURIBGA

PROVINCE . L.	COMMUNE	VITESSE		eest ees
KHOURIBGA	AIN KAICHER	10	2	2
KHOURIBGA	AIT AMMAR	7	1	1
KHOURIBGA	BEJAAD	10	2	2
KHOURIBGA	BIR MEZOUI	7	1	1
KHOURIBGA	BNI BATAOU	10	2	2
KHOURIBGA	BNI SMIR	7	1	1
KHOURIBGA	BNI YKHLEF	7	1	1
KHOURIBGA	BNI ZRANTEL	10	2	2
KHOURIBGA	BOUJNIBA	7	1	1
KHOURIBGA	BOUKHRISSE	10	2	2
KHOURIBGA	BOULANOUARE	7	1	1
KHOURIBGA	BRAKSA	7	1	1
KHOURIBGA	CHOUGRANE	7	1	2
KHOURIBGA	EL FOQRA	7	1	1
KHOURIBGA	HATTANE }	7	11	1

KHOURIBGA	KASBAT TROCH	7	1	1
KHOURIBGA	KHOURIBGA	7	1	1
KHOURIBGA	LAGFAF	7	1	1
KHOURIBGA	LAGNADIZ	7	1	1
KHOURIBGA	MAADNA	7	1 1	1
KHOURIBGA	M'FASSIS	7	1	1
KHOURIBGA	OUAD ZEM	7	1	1
KHOURIBGA	OULAD ABDOUNE	7	1	1
KHOURIBGA	OULAD AISSA	7	1	1
KHOURIBGA	OULAD AZZOUZ	7	1	1
KHOURIBGA	OULAD BOUGHADI	. 7	1	1
KHOURIBGA	OULAD FENNANE	7	1 1	1
KHOURIBGA	OULAD FTATA	7	1	1
KHOURIBGA	OULAD GOUAOUCH	10	2	2
KHOURIBGA	ROUACHED	7	- 1	2
KHOURIBGA	TACHRAFAT	10	2	2

PROVINCE DE SETTAT

PROVINCE	COMMUNE	VITESSE	ZONE SISMICU E ERVITESE	
SETTAT	AIN BLAL	7	1	1
SETTAT	AIN DORBANE	7	1	1
SETTAT	AIN NZAGH	7	1	1
SETTAT	BEN AHMED	7	1	1
SETTAT	BEN MAACHOU	10	2	2
SETTAT	BERRECHID	7	1	1
SETTAT	BNI KHLOUG	7	1	1
SETTAT	BNI YAGRINE	7	1	1
SETTAT	BOUGARGOUH	7	1	1
SETTAT	DAR CHAFFAI	7	1	1
SETTAT	DEROUA	10	2	1
SETTAT	EL BOROUJ	7	1	1
SETTAT	EL GARA	7	1	1
SETTAT	FOQRA OULAD AAMEUR	7	1	1
SETTAT	GDANA	7	1	1
SETTAT	GUISSER	7	1	1
SETTAT	JAQMA	7	1	1
SETTAT	KASBAT BEN MCHICH	10	2	1
SETTAT	KHEMISSET CHAOUIA	7	1 1	1
SETTAT	LAGHNIMYINE	10	2	1
SETTAT	LAHLAF M'ZAB	7	1 1	, l

SETTAT	LAHOUAZA	7	1	1
SETTAT	LAHSASNA	7	1	1
SETTAT	LAKHIAITA	10	2	. 2
SETTAT	LAKHZAZRA	7	1	1
SETTAT	LAMBARKIYINE	7	1	1
SETTAT	LAQRAQRA	7	1	. 1
SETTAT	LOULAD	7	1	1
SETTAT	MACHRAA BEN ABBOU	7	1	1
SETTAT	MESKOURA	7	1	1
SETTAT	M'GARTO	7	1	1
SETTAT	MNIAA	7	1	1
SETTAT	MRIZIGUE	. 7	1 -	1
SETTAT	MZOURA	7	1	1
SETTAT	N'KHILA	7	1	1
SETTAT	OUAD NAANAA	7	1	. 1
SETTAT	OULAD AAFIF	7	1	1
SETTAT	OULAD ABBOU	10	2	1
SETTAT	OULAD AMER	7	1	1
SETTAT	OULAD BOUALI NOUAJA	7	1	1
SETTAT	OULAD CEBBAH	7	1	1
SETTAT	OULAD CHBANA	7	1	1
SETTAT	OULAD FARES	7	1	1
SETTAT	OULAD FARES EL HALLA	7	1	1
SETTAT	OULAD FREIHA	7	1	1
SETTAT	OULAD M'HAMED	7	1	1
SETTAT	OULAD M'RAH	7	1	1
SETTAT	OULAD SAID	7	1	1
SETTAT	OULAD SGHIR	7	1	1
SETTAT	OULAD ZIDANE	7	1	1
SETTAT	RAS EL AIN CHAOUIA	7	1	1
SETTAT	RIAH	7	1	1
SETTAT	RIMA	7	1	· 1
SETTAT	SAHEL OULAD H'RIZ	10	2	2
SETTAT	SETTAT	7	1	1
SETTAT	SGAMNA	7	1	<u>*</u>
SETTAT	SIDI ABDELKHALEQ	10	2	1
SETTAT	SIDI ABDELKRIM	7	1	1
SETTAT	SIDI AHMED EL KHADIR	7	1	1
SETTAT	SIDI BOUMEHDI	7	1	1
SETTAT	SIDI DAHBI	7	1	
		7		1
SETTAT	SIDI EL AIDI		1	1
SETTAT	SIDI EL MEKKI	7	1	1
SETTAT	SIDI MOHAMMED BENI	7	1	1
SETTAT	SIDI MOHAMMED BEN RAHAL	7	1	. 1

	Manufacture				+
SETTAT	SIDI RAHAL CHATAI	10	2	2	١
SETTAT	SOUALEM	10	2	2	l
SETTAT	TAMADROUST	7	1	1	I
SETTAT	TOUALET	7	1	1	١
SETTAT	ZAOUIAT SIDI BEN HAMDOUN	7	1	1	

PROVINCE D'AL HAOUZ

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
AL HAOUZ	ABADOU	10	2	2
AL HAOUZ	AGHBAR	10	2	2
AL HAOUZ	AIT AADEL	10	2	2
AL HAOUZ	AIT FASKA	10	2	2
AL HAOUZ	AIT HKIM AIT IZID	10	2	2
AL HAOUZ	AIT OURIR	10	2	2
AL HAOUZ	AIT SIDI DAOUD	10	2	2
AL HAOUZ	AMGHRAS	10	2	3
AL HAOUZ	AMIZMIZ	10	2	3
AL HAOUZ	ANOUGAL	10	2	2
AL HAOUZ	ASNI	10	2	2
AL HAOUZ	AZGOUR	10	2	2
AL HAOUZ	DAR JAMAA	10	2	3
AL HAOUZ	GHMATE	10	2	3
AL HAQUZ	IGHIL	10	2	2
AL HAOUZ	IGUERFEROUANE	10	2	2
AL HAOUZ	IJOUKAK	7	1	2
AL HAOUZ	IMGDAL	10	. 2	2
AL HAOUZ	LALLA TAKARKOUST	10	2	3
AL HAOUZ	MOULAY BRAHIM	10	2	3
AL HAOUZ	OUAZGUITA	10	2	3
AL HAOUZ	OUIRGANE	10	2	2
AL HAOUZ	OUKAIMDEN	10	2	2
AL HAOUZ	OULAD MTAA	10	2	3
AL HAOUZ	OURIKA	10	2	3
AL HAOUZ	SIDI ABDALLAH GHIAT	10	2	3
AL HAOUZ	SIDI BADHAJ	10	2	3
AL HAOUZ	STI FADMA	10	2	2
AL HAOUZ	TAHANNAOUT	10	2	3
AL HAOUZ	TALAT N'YAAQOUB	10	2	2
AL HAOUZ	TAMAGUERT	10	2	. 2
AL HAOUZ	TAMAZOUZTE	10	2	3
AL HAOUZ	TAMESLOHTE	10	2	3
AL HAOUZ	TAZART	10	2 .	2
AL HAOUZ	TIDILI MESFIOUA	10	2	2

AL HAOUZ	TIGHEDOUINE	10	2	2
AL HAOUZ	TIZGUINE	10	2	3
AL HAOUZ	TOUAMA	10	2	2
AL HAOUZ	ZERKTEN	10	2	2

PROVINCE DECHICHAOUA

PROVINCE	COMMUNE	VITESSE	ZONG SISMIQUE EN VITESSE	ZONE SISMIQUEEN ACCOLERATION
CHICHAOUA	ADASSIL	10	2	2.
CHICHAOUA	AFALLA ISSEN	7	1	2
CHICHAOUA	AHDIL	7	1	1
CHICHAOUA	AIN TAZITOUNTE	7	1	2
CHICHAOUA	AIT HADDOU YOUSSEF	10	2	2
CHICHAQUA	AIT HADI	7	1	2
CHICHAOUA	ASSIF EL MAL	10	2	3
CHICHAOUA	BOUABOUT	7	1	1
CHICHAOUA	BOUABOUT AMDLANE	7	1	2
CHICHAOUA	CHICHAOUA	7	1.	2
CHICHAOUA	DOUIRANE	7	1	2
CHICHAOUA	GMASSA	10	2	3
CHICHAOUA	ICHAMRAREN	7	1	2
CHICHAOUA	IMINDOUNIT	10	2	2
CHICHAOUA	IMINTANOUTE	7	1	2
CHICHAOUA	IROHALEN	7	1	2
CHICHAOUA	KOUZEMT	7	1	2
CHICHAOUA	LALLA AAZIZA	10	2	2
CHICHAOUA	LAMZOUDIA	7	1	2
CHICHAOUA	MAJJAT	7	1	2
CHICHAOUA	M'ZOUDA	7	1	2
CHICHAOUA	NFIFA	7	1	2
CHICHAOUA	QUAD LBOUR	7	1	2
CHICHAOUA	OULAD MOUMNA	7	1	1
CHICHAOUA	RAHHALA	7	1	1
CHICHAOUA	SAIDATE	7	1	2
CHICHAOUA	SID L'MOKHTAR	7	1	1.
CHICHAOUA	SIDI ABDELMOUMEN	7	1	2
CHICHAOUA	SIDI BOUZID ARRAGRAGUI	7	1	2
CHICHAOUA	SIDI GHANEM	7	1	2
CHICHAQUA	SIDI M'HAMED DALIL	7	1	2
CHICHAOUA	TAOULOUKOULT	· 7	1.	2
CHICHAOUA	TIMEZGADIOUINE	7	1	3
CHICHAOUA	TIMULT	7	1	2
CHICHAOUA	ZAQUIAT ANNAHLIA	7	1	2

PROVINCE D'EL KELAA SRAGHNA

PROVINCE .	COMMUNE	VITESSE		
EL KELAA SRAGHNA	AIT HAMMOU	7	1	1
EL KELAA SRAGHNA	AIT TALE8	7	1	1
EL KELAA SRAGHNA	AKARMA	7	1	2
EL KELAA SRAGHNA	ASSAHRIJ	10	2	2
EL KELAA SRAGHNA	BEN GUERIR	7	1	1
EL KELAA SRAGHNA	BOUCHANE	7	1	1
EL KELAA SRAGHNA	BOURROUS	10	2	2
EL KELAA SRAGHNA	BOUYA OMAR	10	2	2
EL KELAA SRAGHNA	CHOARA	10	2	2
EL KELAA SRAGHNA	CHTAIBA	7	1	1
EL KELAA SRAGHNA	DZOUZ	10	2	2
EL KELAA SRAGHNA	EDDACHRA	7	1	2
EL KELAA SRAGHNA	EL AAMRIA	7	1	1
EL KELAA SRAGHNA	EL MARBOUH	7	1	1
EL KELAA SRAGHNA	ERRAFIAYA	7	1	1
EL KELAA SRAGHNA	FRAITA	10	2	2
EL KELAA SRAGHNA	HIADNA	7	1	1
EL KELAA SRAGHNA	JAAFRA	7	1	1
EL KELAA SRAGHNA	JAIDATE	10	2	2
EL KELAA SRAGHNA	JBIEL	7	1	2
EL KELAA SRAGHNA	JOUALA	10	2	2
EL KELAA SRAGHNA	KELAAT SRAGHNA	7	1	2
EL KELAA SRAGHNA	LAATAMNA	10	2	2
EL KELAA SRAGHNA	LAATAOUIA	10	2	2
EL KELAA SRAGHNA	LAATTAOUIA ECHCHAYBIA	1Ö	. 2	2
EL KELAA SRAGHNA	LABRIKIYNE	7	1	1
EL KELAA SRAGHNA	LAMHARRA	7	1	1
EL KELAA SRAGHNA	L'OUAD LAKHDAR	10	2	2
EL KELAA SRAGHNA	LOUNASDA	7	1	1
EL KELAA SRAGHNA	MAYATE	7	1	1
EL KELAA SRAGHNA	M'ZEM SANHAJA	10	2	2
EL KELAA SRAGHNA	NZALAT LAADAM	7	1	1
EL KELAA SRAGHNA	OUARGUI	10	2	2
EL KELAA SRAGHNA	OULAD AAMER	10	2	2
EL KELAA SRAGHNA	OULAD AAMER TIZMARINE	7	1	1
EL KELAA SRAGHNA	OULAD AARRAD	10	2	2
EL KELAA SRAGHNA	OULAD BOUALI L'OUAD	10	2	2
EL KELAA SRAGHNA	OULAD CHERKI	7	1	1
EL KELAA SRAGHNA	OULAD EL GARNE	7	1	1
EL KELAA SRAGHNA	OULAD HASSOUNE HAMRI	7	1	1

EL KELAA SRAGHNA	OULAD IMLOUL	A. (7) (7)	1	1
EL KELAA SRAGHNA	OULAD KHALLOUF	10	2	2
EL KELAA SRAGHNA	OULAD MASSAOUD	7	1	1
EL KELAA SRAGHNA	OULAD MSABBEL	7	1	1
EL KELAA SRAGHNA	OULAD SBIH	7	1	1
EL KELAA SRAGHNA	OULAD YACOUB	10	2	2
EL KELAA SRAGHNA	OULAD ZARRAD	7	1	1
EL KELAA SRAGHNA	RAS AIN RHAMNA	10	2	2
EL KELAA SRAGHNA	SIDI ABDALLAH	7 -	1	1
EL KELAA SRAGHNA	SIDI AISSA BEN SLIMANE	10	2	2
EL KELAA SRAGHNA	SIDI ALI LABRAHLA	7	1	1
EL KELAA SRAGHNA	SIDI BOU OTHMANE	7	1	. 2
EL KELAA SRAGHNA	SIDI BOUBKER	7	1	2
EL KELAA SRAGHNA	SIDI EL HATTAB	7	1	1
EL KELAA SRAGHNA	SIDI GHANEM	7	1	1
EL KELAA SRAGHNA	SIDI MANSOUR	7 to	1	1
EL KELAA SRAGHNA	SIDI MOUSSA	7	1	1
EL KELAA SRAGHNA	SIDI RAHHAL	10	2	2
EL KELAA SRAGHNA	SKHOUR RHAMNA	7 :	11	1
EL KELAA SRAGHNA	SKOURA LHADRA	7	1	1
EL KELAA SRAGHNA	SOUR EL AAZ	10	2	2
EL KELAA SRAGHNA	TAMALLALT-	10	2	2
EL KELAA SRAGHNA	TAOUZINT	7	1	2
EL KELAA SRAGHNA	TLAUH	10	2	2
EL KELAA SRAGHNA	ZEMRANE	10	2	2
EL KELAA SRAGHNA	ZEMRANE CHARQIA	10 .	2	22
EL KELAA SRAGHNA	ZNADA	7	1	2

PROVINCE D'ESSAOUIRA

PROVINCE	COMMUNE	VITESSE		
ESSAOUIRA	ADAGHAS	10	2	3
ESSAOUIRA	AGLIF	7	1	2
ESSAOUIRA	AGUERD	10	2	2
ESSAOUIRA	AIT AISSI IHAHANE	10	2	3
ESSAOUIRA	AIT DAOUD	7	1	2
ESSAOUIRA	AIT SAID	10	2	2
ESSAOUIRA	AQERMOUD	10	2	2
ESSAOUIRA	ASSAIS	7	1	3
ESSAOUIRA	BIZDAD	7	1	1
ESSAOUIRA	BOUZEMMOUR	7	1	2
ESSAOUIRA	EL HANCHANE	10	2	2
ESSAOUIRA	ESSAOUIRA	10	2	2

ESSAOUIRA	EZZAOUITE	7	1	2
ESSAOUIRA	HAD DRA	10	2	2
ESSAOUIRA	IDA OU AAZZA	10	2	2
ESSAOUIRA	IDA OU GUELLOUL	10	2	3
ESSAOUIRA	IDA OU KAZZOU	10	2	3
ESSAOUIRA	IMGRADE	10	2	2
ESSAOUIRA	IMI N'TLIT	10	2	2
ESSAOUIRA	KECHOULA	7	1	1
ESSAOUIRA	KORIMATE	7	1	1
ESSAOUIRA	LAGDADRA	10	2	2
ESSAOUIRA	LAHSINATE	10	2	2
ESSAOUIRA	WEIII	7	1	1
ESSAOUIRA	MESKALA	7	1	1
ESSAOUIRA	M'KHALIF	10	2	1
ESSAOUIRA	MOUARID	7	1	1
ESSAOUIRA	MOULAY BOU ZARQTOUNE	10	2	2
ESSAOUIRA	M'RAMER	7	1	1
ESSAOUIRA	MZILATE	7	1	1
ESSAOUIRA	OULAD M'RABET	7	1	1
ESSAOUIRA	OUNAGHA	10	2	2
ESSAOUIRA	SIDI ABDELJALIL	10	2	2
ESSAOUIRA	SIDI AHMED ESSAYEH	. 10	2	2
ESSAOUIRA	SIDI AISSA REGRAGUI	10	2	2
ESSAOUIRA	SIDI ALI EL KORATI	10	2	2
ESSAOUIRA	SIDI BOULAALAM	7	1	1
ESSAOUIRA	SIDI EL JAZOULI	10	2	2
ESSAOUIRA	SID! GHANEME	7	1	2
ESSAOUIRA	SIDI H'MAD OU HAMED	10	2	- 2
ESSAOUIRA	SIDI H'MAD OU M'BAREK	10,	2	3
ESSAOUIRA	SIDI ISHAQ	10	2	2
ESSAOUIRA	SIDI KAOUKI	10	2	2
ESSAOUIRA	SIDI LAAROUSSI	7	1	1
ESSAOUIRA	SIDI M'HAMED OU MARZOUQ	7	1	1
ESSAOUIRA	SMIMOU	10	2	2
ESSAOUIRA	TAFEDNA	10	2	2
ESSAOUIRA	TAFETACHTE	7	1	1
ESSAOUIRA	TAHELOUANTE	7	1	2
ESSAOUIRA	TAKATE	10	2	2
ESSAOUIRA	TAKOUCHT	7	1	2
ESSAOUIRA	TALMEST	10	2	2
ESSAOUIRA	TAMANAR	10	2	3
ESSAOUIRA	TARGANTE	10	2	2
ESSAOUIRA	TIDZI	10	2	2

ESSAOUIRA	TIMIZGUIDA OUFTAS	10	2	3
ESSAOUIRA	ZAOUIAT BEN HMIDA	10	2	2

PROVINCE DE MARRAKECH-MEDINA

PROVINCE	COMMUNE	VITESSE	20NE SISIMIQUE EN VITASSE	ZONE GISMIGUE EN ACCELERATION
MARRAKECH-MEDINA	MARRAKECH MEDINA	10	2	3
MARRAKECH-MENARA	AGAFAY	10	2	3
MARRAKECH-MENARA	AIT IMOUR	10	2	3
MARRAKECH-MENARA	LOUDAYA	10	2	3
MARRAKECH-MENARA	MACHOUAR KASBA	10	2	3
MARRAKECH-MENARA	MENARA GUELIZ	10	2 .	3
MARRAKECH-MENARA	SAADA	10	2	3
MARRAKECH-MENARA	SID ZOUINE	7	1	3
MARRAKECH-MENARA	SOUIHLA	10	2	3
MARRAKECH-MENARA	TASSOULTANTE	10	2	3

PROVINCE DE SIDI YOUSSEF-BEN ALI

PROVINCE	COMMUNE	VITESSE		
SIDI YOUSSEF-BEN ALI	ALOUIDANE	10	2	3
SIDI YOUSSEF-BEN ALI	ANNAKHIL	10	2	3
SIDI YOUSSEF-BEN ALI	HARBIL	10	2	2
SIDI YOUSSEF-BEN ALI	M'NABHA	7	1	1
SIDI YOUSSEF-BEN ALI	QUAHAT SIDI BRAHIM	10	2	3
SIDI YOUSSEF-BEN ALI	OULAD DLIM	7	1	1
SIDI YOUSSEF-BEN ALI	OULAD HASSOUNE	10	2	3
SIDI YOUSSEF-BEN ALI	SIDI YOUSSEF BEN ALI	10	2	3

PROVINCE DEBERKANE

PROVINCE	COMMUNE	VITESSE		
BÉRKANE	AGHBAL	13	3	2
BERKANE	Ahfir	13	3	2
BERKANE	AIN ERREGGADA	13	3	2
BERKANE	AKLIM	13	3	3 、
BERKANE	BERKANE	13	3	2
BERKANE	BOUGHRIBA	13	3	3
BERKANE	CHOUIHIYA	13	3	3
BERKANE	FEZOUANE	13	3	2

BERKANE	LAATAMNA	13	3	3
BERKANE	MADAGH	13	3	3
BERKANE	RISLANE	13	3	2
BERKANE	SAIDIA	13	3	3
BERKANE	SIDI BOUHRIA	13	3	2
BERKANE	SIDI SLIMANE ECHCHERRAA	13	3	2
BERKANE	TAFOUGHALT	13	3	2
BERKANE	ZEGZEL	13	3	2

PROVINCE DE FIGUIG

PROVINCE:	COMMUNE	VITESSE		
FIGUIG	ABBOU LAKHAL	5	0	1
FIGUIG	AIN CHOUATER	5	0	1
FIGUIG	BNI GUIL	5	0	1
FIGUIG	BNI TADJITE	7	. 1	2
FIGUIG	BOUANANE	7	1	1
FIGUIG	BOUARFA	5	0	1
FIGUIG	BOUCHAOUENE	10	2	1
FIGUIG	BOUMERIEME	10	2	2
FIGUIG	FIGUIG	5	0	1
FIGUIG	MAATARKA	7	1	1
FIGUIG	TALSINT	7	1	2
FIGUIG	TENDRARA	7	1	1

ROVINCE DE JRADA

T c Jacopoge	COMMUNE	VITESSE	The second se	President State of the State of
JRADA	AIN BNI MATHAR	7	1	1
JRADA	BNI MTHAR	7	1	1
JRADA	GAFAIT	10	2	2
JRADA	GUENFOUDA	10	2	2
JRADA	JRADA	10	2	2
JRADA	LAAOUINATE	10	2	2
JRADA	LEBKHATA	10	2	2
JRADA	MRIJA	10	2	1
JRADA	OULAD GHZIYEL	10	2 .	1
JRADA	OULAD SIDI ABDELHAKEM	7	1	1
JRADA	RAS ASFOUD	10	2	2
JRADA	SIDI BOUBKER	10	2	2
JRADA	TIOULI	10	2	2
JRADA	TOUISSIT	10	2	2

PROVINCE DE NADOR

PROVINCE: "-"	COMMUNE	VITESSE		
NADOR	AFSOU	13	3	3
NADOR	AIN ZOHRA	13	3	3
NADOR	AIT MAIT	17	4	4
NADOR	AL AAROUI	13	3	3
NADOR	AL BARKANYENE	13	3	3
NADOR	AMEJJAOU	17	4	4
NADOR	AREKMANE	13	3	3
	AZLAF	13	3	4
NADOR	100 (AAAA) (100 (AAA	17	4	4
NADOR	BEN TAIEB	1000,000 TO 1000	0.050 6 - 60	4
NADOR	BNI ANSAR	17 17	4	3
NADOR	BNI BOUIFROUR	0.00000		
NADOR	BNI CHIKER	17	4	4
NADOR	BNI MARGHNINE	17	4	0
NADOR	BNI OUKIL OULED M'HAND	13	3	3
NADOR	BNI SIDEL JBEL	17	4	4
NADOR	BNI SIDEL LOUTA	17	4	4
NADOR	BOUARG	17	4	3
NADOR	BOUDINAR	17	4	4
NADOR	DAR EL KEBDANI	17	4	4
NADOR	DRIOUCH	13	3	3
NADOR	FARKHANA	17	4	4
NADOR	HASSI BERKANE	13	3	3
NADOR	IAAZZANENE	17	4	4
NADOR	IFERNI	17	4	4
NADOR	IHADDADENE	17	4	3
NADOR	IJERMAOUAS	17	4	4
NADOR	IKSANE	13	3	3
NADOR	MELLILIA	17	4	4
NADOR	M'HAJER	17	4	4
NADOR	MIDAR	17	4	4
NADOR	NADOR	17	4	3
NADOR	OUARDANA	17	4	4
NADOR	OULAD AMGHAR	17	4	4
NADOR	OULAD BOUBKER	13	3	3
NADOR	OULAD DAOUD ZKHANINE	13	3	3
NADOR	OULAD SETTOUT	13	3	3
NADOR	RAS EL MA	13	3	3
NADOR	SELOUANE	17	4	3

				AND ALL CONTRACT OF THE PARTY OF
NADOR	TAFERSIT	17	4	4
NADOR	TALILIT	17	4	4
NADOR	TAZAGHINE	17	4	4
NADOR	TEMSAMANE	17	4	4
NADOR	TIZTOUTINE	13	3	3
NADOR	· TROUGOUT	17	4	4
NADOR	TSAFT	17	4	4
NADOR	ZAIO	13	3	3
NADOR	ZEGHANGHANE	17	4	3

PROVINCE D'OUJDA ANGAD

PROVINCE	COMMUNE	VITESSE	Zajar sista alije Baziste str	ASSAULT SEASON
OUJDA ANGAD	AHL ANGAD	13	3	2
OUJDA ANGAD	AIN SFA	13	3	2
OUJDA ANGAD	BNI DRAR	13	3	2
OUJDA ANGAD	BNI KHALED	13	3	2
OUJDA ANGAD	BSARA	13	3	2
OUJDA ANGAD	ISLY	10	2	2
OUJDA ANGAD	MESTFERKI	10	2	2
OUJDA ANGAD	NEIMA	10	2	2
OUJDA ANGAD	OUAD ENNACHEF SIDI MAAFA	13	3 .	2
OUJDA ANGAD	OUJDA SIDI ZIANE	10	2	2
OUJDA ANGAD	SIDI BOULENOUAR	13	3	2
OUJDA ANGAD	SIDI DRISS EL QADI	10	2	2
OUJDA ANGAD	SIDI MOUSSA LEMHAYA	10	2	2
OUJDA ANGAD	SIDI YAHYA	13	3 ;	2
J <u></u>	1			

PROVINCE DE TAOURIRT

PROVINCE (COMMUNE	VITESSE		
TAOURIRT	AHL OUAD ZA	10	2	2
TAOURIRT	AIN LEHJER	10	2	2
TAOURIRT	DEBDOU	10	2 .	2
TAOURIRT	EL AIOUN SIDI MELLOUK	10	2	2
TAOURIRT	EL ATEF	10	2	1
TAOURIRT	GTETER	10	2	2
TAOURIRT	MECHRAA HAMMADI	13	3	2
TAOURIRT	MELG EL OUIDANE	10	2	3
TAOURIRT	MESTEGMER	10	2	2

TAOURIRT	OULAD M'HAMMED	10	2	1
TAOURIRT	SIDI ALI BELKASSEM	10	2	2
TAOURIRT	SIDI LAHCEN	10	2	2
TAOURIRT	TANCHERFI	10	2	2
TAOURIRT	TAOURIRT	10	2	. 2

PROVINCE D'AIN CHOK HAY HASSANI

PROVINCE	CÓMMUNE	VITESSE	And where a	
AIN CHOK HAY HASSANI	AIN CHOCK	10	2 -	2
AIN CHOK HAY HASSANI	HAY HASSANI	10	2	2
AIN CHOK HAY HASSANI	LISSASFA	10	2	2
AIN CHOK HAY HASSANI	SIDI MAAROUF	10	2	2
AIN CHOK HAY HASSANI	test	10	2	2
AIN SEBAA-HAY MOHAMMA	AIN SEBAA	10	2	2
AIN SEBAA-HAY MOHAMMA	ASSOUKHOUR ASSAWDA	10	2	2
AIN SEBAA-HAY MOHAMMA	HAY MOHAMMADI	10	2	2
AIN SEBAA-HAY MOHAMMA	SIDI MOUMEN	10	2	2

PROVINCE D'AL FIDA-DERB SULTAN

PROVINCE	COMMUNE	VITESSE		
AL FIDA-DERB SULTAN	AL FIDA	10	2	2
AL FIDA-DERB SULTAN	AL IDRISSIA	10	2	2
AL FIDA-DERB SULTAN	BOU CHENTOUF	10	2	2
AL FIDA-DERB SULTAN	MERS SULTAN	10	2	2

PROVINCE DE BEN MSICK-SIDI OTHMAN

, PROVINCE	COMMUNE	VITESSE		
BEN MSICK-SIDI OTHMAN	BEN MSICK	10	2	2 - 2
BEN MSICK-SIDI OTHMAN	EL MAJJATIA OULAD TALEB	10	2	2
BEN MSICK-SIDI OTHMAN	MEDIOUNA	10	2	2
BEN MSICK-SIDI OTHMAN	MOULAY RACHID	10	2	2
BEN MSICK-SIDI OTHMAN	SALMIA	10	2	2
BEN MSICK-SIDI OTHMAN	SBATA	10	2	2
BEN MSICK-SIDI OTHMAN	SIDI OTHMANE	10	2	2

PROVINCE DE CASABLANCA-ANFA

PROVINGE	COMMUNE	VITESSE		
CASABLANCA-ANFA	ANFA	10	2	2
CASABLANCA-ANFA	EL MAARIF	10	2	2
CASABLANCA-ANFA	MOULAY YOUSSEF	10	2	2
CASABLANCA-ANFA	SIDI BELYOUT	10		2
MACHOUAR CASABLANCA	MACHOUAR CASABLANCA	10	2	2

PROVINCE DENOUACEUR

PROYMEE	COMMUNE	VITESSE	SOME SAMPLEDE	
NOUACEUR	BOUSKOURA	10	2	2
NOUACEUR	DAR BOUAZZA	10	2	2
NOUACEUR	NOUACEUR	10	2	1
NOUACEUR	OULAD SALAH	10	2	1

PROVINCE DE MOHAMMEDIA

PROVINCE:	CONTAINE	VITESSE	24 ha yasan iya Ba Magaya	askie dani
MOHAMMEDIA	MOHAMMEDIA	10	2	2

PROVINCE DE SIDI BERNOUSSI-ZENATA

PROVINCE	COMMUNE	VITESSE	William I	COME SIGNICALE SO ACCEPTERACIONES
SIDI BERNOUSSI-ZENATA	AHL LAGHLAM	10	2	2
SIDI BERNOUSSI-ZENATA	AIN HARROUDA	10	2	2
SIDI BERNOUSSI-ZENATA	ECHCHALLALATE	10	2	2
SIDI BERNOUSSI-ZENATA	LAHRAOUYINE	10	2	2
SIDI BERNOUSSI-ZENATA	SIDI BERNOUSSI	10	2	2
SIDI BERNOUSSI-ZENATA	SIDI HAJJAJ OUAÐ HASSAR	1.0	2	1
SIDI BERNOUSSI-ZENATA	TIT MELLIL	10	2	2

PROVINCE DE RABAT

PROVINCE	COMMUNE	VITESSE	SISTEMATE EAT	ZINE Jaigvardus En Acceleration
RABAT	AGDAL RIYAD	10	2	2
RABAT	EL YOUSSOUFIA	10	2	2
RABAT	RABAT HASSAN	10	2	2 `
RABAT	TOUARGA	10	2	2
RABAT	YACOUB EL MANSOUR	10	2	2

PROVINCE DE KHEMISSET

PROVINCE	COMMUNE	VITESSE	PCINESISSABLE SALVATESSE	ACAS Siskaidiue Dag Aprelio Pagan
KHEMISSET	AIN JOHRA	10	2	2
KHEMISSET	AIN SBIT	7	1	1
KHEMISSET	AIT BELKACEM	10	2	1
KHEMISSET	AIT BOUYAHYA EL HAJJAM	10	2	2
KHEMISSET	AIT ICHOU	7	1	1
KHEMISSET	AIT IKKOU	10	2	2
KHEMISSET	AIT MALEK	10	2	2
KHEMISSET	AIT MIMOUNE	10	2	2
KHEMISSET	AIT OURIBEL	10	2	2
KHEMISSET	AIT SIBERNE	10	2	2
KHEMISSET	AIT YADINE	10	2	2
KHEMISSET	BOUQACHMIR	7	1	2

28.50					
Γ	KHEMISSET	BRACHOUA	7	1	1
	KHEMISSET	EL GANZRA	10	2	2
	KHEMISSET	EZZHILIGA	7	1	1
1	KHEMISSET	HOUDERRANE	10	2	1
	KHEMISSET	JEMAAT MOUL BLAD	7	1	1
	KHEMISSET	KHEMISS SIDI YAHYA	10	2	1
	KHEMISSET	KHEMISSET	10	2	2
	KHEMISSET	LAGHOUALEM	7	1	1
	KHEMISSET	MAAZIZ	10	2	1
1	KHEMISSET	MAJMAA TOLBA	10	2	2
	KHEMISSET	MARCHOUCH	7	1	1
	KHEMISSET	MOULAY DRISS AGHBAL	10	2	1
	KHEMISSET	MQAM TOLBA	10	2	2
	KHEMISSET	OULMES	7	1	2
	KHEMISSET	ROMMANI	7	1	1
Š	KHEMISSET	SFASSIF	10	2	2
	KHEMISSET	SIDI ABDERRAZAK	10	2	2
	KHEMISSET	SIDI ALLAL EL BAHRAOUI	10	2	2
	KHEMISSET	SIDI ALLAL LAMSADDER	10	2	2
1	KHEMISSET	SIDI BOUKHALKHAL	10	2	2
1	KHEMISSET	SIDI EL GHANDOUR	10	2	2
i	KHEMISSET	TIDDAS	7	1	1
<u>i</u>	KHEMISSET	TIFLET	10	2	2

PROVINCE DE SALE

PROVINCE	COMMUNE	VITESSE	ZONE SISKVICUE ENVITASSE	ZONE FSISMIQUE EN ACT BLERATION
SALE	HSSAINE	10	2	2
SALE	SALE BAB LAMRISSA	10	2	- 2
SALE	SALE BETTANA	10	2	2
SALE	SALE LAAYAYDA	10	, 2	2
SALE	SALE TABRIQUET	10	2	2
SALE	SHOUL	10	2	2
SALE	SIDI BOUKNADEL	10	2	2

PROVINCE DE SKHIRATE-TEMARA

PROVINCE	COMMUNE	VITESSE	ZONË SISKVICTUE EN-VITCESË	ZGNE SISMIQUEEN
SKHIRATE-TEMARA	AIN ATTIG	10	2	2
SKHIRATE-TEMARA	AIN EL AOUDA	10	2	1
SKHIRATE-TEMARA	EL MENZEH	10	2	2

					20 00 000 0000
SKHIRATE-TEMARA	HARHOURA		10	2	2
SKHIRATE-TEMARA	MERS ELK HEIR		10	2	2
SKHIRATE-TEMARA	OUMAZZA		10	2	1
SKHIRATE-TEMARA	SABBAH	3	10	2	2
SKHIRATE-TEMARA	SIDI YAHYA ZAER		10	2	1
SKHIRATE-TEMARA	SKHIRATE	58	10	2	2
SKHIRATE-TEMARA	TEMARA		10	2	2

PROVINCE D' EL JADIDA

PROVINCE	COMMUNE	VITESSE	ZÖNE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
EL JADIDA	AZEMMOUR	10	2	2
EL JADIDA	BNI HILAL	10	2	1
EL JADIDA	BNI TSIRISS	7	1	1
EL JADIDA	BOUHMAME	7	1	1
EL JADIDA	BOULAOUANE	7	1	1
EL JADIDA	CHAIBATE	10	2	2
EL JADIDA	CHTOUKA	10	2	2
EL JADIDA	EL JADIDA	10	2	2
EL JADIDA	HAOUZIA	10	2.	2
EL JADIDA	JABRIA	7	1	1
EL JADIDA	KHMIS KSIBA	7	1	1
EL JADIDA	KOUDIAT BNI DGHOUGH	7	1	1
EL JADIDA	KRIDID	7	1	1
EL JADIDA	LAAGAGCHA	10	2	1
EL JADIDA	LAAMRIA	7	1	1
EL JADIDA	LAAOUNATE	7	1	1
EL JADIDA	LAATATRA	7	1	1
EL JADIDA	LAGHDIRA	10	2	2
EL JADIDA	LAGHNADRA	10	2	1
EL JADIDA	LAMHARZA ESSAHEL	10	2	2
EL JADIDA	LBIR JDID	10	2	2
EL JADIDA	LGHARBIA	10	2	2
EL JADIDA	LMECHREK	10	2	1
EL JADIDA	LOUALIDIA	10	2	2
EL JADIDA	METRANE	7	1	1
EL JADIDA	METTOUH	10	2	1
EL JADIDA	MOGRESS	10	2	2
EL JADIDA	MOULAY ABDELLAH	10	2	2
EL JADIDA	M'TAL	7	1	1
EL JADIDA	OULAD AISSA	10	2	2
EL JADIDA	OULAD AMRANE	7	1	1

EL JADIDA	OULAD BOUSSAKEN	7	1	1
EL JADIDA	OULAD FREJ	10	2	1
EL JADIDA	OULAD GHANEM	10	2	2
EL JADIDA	OULAD HAMDANE	10	2	2
EL JADIDA	OULAD HCINE	10	2	2
EL JADIDA	OULAD RAHMOUNE	10	2	2
EL JADIDA	OULAD SBAITA	10	2	2
EL JADIDA	OULAD SI BOUHYA	7	1	1
EL JADIDA	OULAD SIDI ALI BEN YOUSSEF	10	2	1
EL JADIDA	SANIAT BERGUIG	10	2	1
EL JADIDA	SEBT SAISS	10	2	2
EL JADIDA	SI HSAIEN BEN ABDERRAHMANE	10	2	2
EL JADIDA	. SIDI ABED	10	2	2
EL JADIDA	SIDI ALI BEN HAMDOUCHE	10	2	2
EL JADIDA	SIDI BENNOUR	7	1	1
EL JADIDA	SIDI M'HAMED AKHDIM	10	2.	2
EL JADIDA	SIDI SMAIL	10	2	2
EL JADIDA	TAMDA	7	1	1
EL JADIDA	ZAOUIAT LAKOUACEM	10	2	1
EL JADIDA	ZAOUIAT SAISS	10	2	2
EL JADIDA	ZEMAMRA	10	2	1

PROVINCE DE SAFI

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
SAFI	ASFI BIYADA	10	2	2
SAFI	ASFI BOUDHEB	10	2	2
SAFI	ASFI ZAOUIA	10	2	2
SAFI	ATIAMIM .	7	1	1
SAFI	ATOUABET	10	2	2
SAFI	AYIR	10	2	2
SAFI	BOUGUEDRA	10	2	2
SAFI	DAR SI AISSA	10	1 2	2
SAFI	ECHEMMAIA	7	1	1
SAFI	EL BEDDOUZA	10	2	2
SAFI	EL GANTOUR	7	1	1
SAFI	EL GHIATE	10	2	1
SAFI	EL GOURAANI	7	1	1
SAFI	ESBIAAT	7	1	1
SAFI	HRARA	10	2	2
SAFI	IGHOUD	7	1	1
SAFI	JAMAAT SHAIM	10	2	1

SAFI	JDOUR	7	1 1	1
SAFI	JNAN BOUTH	7	1	1
SAFI	KHATAZAKANE	30	2	2.
SAFI	LAAMAMRA	7	1	1
SAFI	LABKHATI	7	1	1
SAFI	LAHDAR	10	2	1
SAFI	LAKHOUALQA	7	1	1
SAFI	LAMAACHATE	10	2	2
SAFI	LAMRASLA	7	1	1
SAFI	LAMSABIH	7	1	1
SAFI	MOUL EL BERGU!	10	2	2
SAFI	NAGGA	7	1.	1
SAFI	OULAD SALMANE	10	2	2
SAFI	RAS EL AIN	7	1	1
SAFI	SAADLA	10	2	2
SAFI	SEBT GZOULA	10	2	2
SAFI	SIDI AISSA	10	2	1
SAFI	SIDI CHIKER	7	1	1
SAFI	SIDI ETTIJI	7	1	1
SAFI	YOUSSOUFIA	7	1	1

PROVINCE DEBENI MELLAL

PROVINCE	COMMUNE	VITESSE	ZONE SISMIONE EN VITESSE	Z ALP BISMANICE E. SOLITOR ACCECERATION
BENI MELLAL	AGHBALA	10	2	2
BENI MELLAL	AIT OUM EL BEKHT	10	2	2
BENI MELLAL	AL KHALFIA	10	2	2
BENI MELLAL	BENI MELLAL	10	2	2
BENI MELLAL	BNI CHEGDALE	7	1	1
BENI MELLAL	BNI OUKIL	7	1	1
BENI MELLAL	BOUTFERDA	10	2	2
BENI MELLAL	BRADIA	10	2	2
BENI MELLAL	DAR OULD ZIDOUH	10	2	2 .
BENI MELLAL	DIR EL KSIBA	10	2	2
BENI MELLAL	EL KSIBA	10	2	2
BENI MELLAL	FOUM EL ANCEUR	10	2	2
BENI MELLAL	FOUM OUDI	10	2	2
BENI MELLAL	FQUIH BEN SALAH	10	2	2
BENI MELLAL	GUETTAYA	10	2	2
BENI MELLAL	HAD BOUMOUSSA	10	2	2
BENI MELLAL	HEL MERBAA	10	2	2
BENI MELLAL	KASBA TADLA	10	2	2

BENI MELLAL	KRIFATE	10	2	2
BENI MELLAL	NAOUR	10	2	2
BENI MELLAL	OULAD AYAD	10	2	2
BENI MELLAL	OULAD BOURAHMOUNE	10	2	2
BENI MELLAL	OULAD GNAOU	10	2	2
BENI MELLAL	OULAD M'BAREK	10	2	2
BENI MELLAL	OULAD NACER	10	2	2
BENI MELLAL	OULAD SAID L'OULAD	10	2	2
BENI MELLAL	OULAD YAICH	10	2	2
BENI MELLAL	OULAD YOUSSEF	10	2	2
BENI MELLAL	OULAD ZMAM	10	2	2
BENI MELLAL	SEMGUET	10	2	2
BENI MELLAL	SIDI AISSA BEN ALI	10	2	2
BENI MELLAL	SIDI HAMMADI	10	2	2
BENI MELLAL	SIDI JABER	10	2	2
BENI MELLAL	SOUK SEBT OULAD NEMMA	10	2	2
BENI MELLAL	TAGHZIRT	10	2	2
BENI MELLAL	TANOUGHA	10	2	2
BENI MELLAL	TIZI N'ISLY	10	2	2
BENI MELLAL	ZAOUIAT CHEIKH	7	1	2

PROVINCE D'AZILAL

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
AZILAL	AFOURAR	10	2	2
AZILAL	AGOUDI N'LKHAIR	10	2	2
AZILAL	AIT ABBAS	10	2	2
AZILAL	AIT BLAL	10	2	• 2
AZILAL	AIT BOU OULLI	10	2	2
AZILAL	AIT MAJDEN	10	2	2
AZILAL	AIT MAZIGH	10	2	2
AZILAL	AIT M'HAMED	10	2	2
AZILAL	AIT OUAARDA	10	2	2
AZILAL	AIT OUMDIS	10	2	2
AZILAL	AIT OUQABLI	10	2	2
AZILAL	AIT TAGUELLA	10	2	2
AZILAL	AIT TAMLIL	10	2	2
AZILAL	ANERGUI	10	2	2
AZILAL	ANZOU	10	2	2
AZILAL	AZILAL	10	2	2
AZILAL	BIN EL OUIDANE	10	2	2
AZILAL	BNI AYAT	10	2	2
AZILAL	BNI HASSANE	10	2	2

AZILAL	BZOU	10	2	2
AZILAL	DEMNATE	10	2	2
AZILAL	FOUM JEMAA	10	2	2
AZILAL	IMLIL	10	2	2
AZILAL	ISSEKSI	10	2	2
AZILAL	MOULAY AISSA BEN DRISS	10	2	2
AZILAL	OUAOUIZAGHT	10	2	2
AZILAL	OUAOULA	10	2	2
AZILAL	RFALA	10	2	2
AZILAL	SIDI BOULKHALF	10	2	2
AZILAL	SIDI YACOUB	10	2	2
AZILAL	TABANT	10	2	2
AZILAL	TABAROUCHT	10	2	2
AZILAL	TABIA	10	2	2
AZILAL	TAGLEFT	10	2	2
AZILAL	TAMDA NOUMERCID	10	2	2
AZILAL	TANANT	10	2	2
AZILAL	TAOUNZA	10	2	2
AZILAL	TIDILI FETOUAKA	10	2	2
AZILAL	TIFFERT N'AIT HAMZA	10	2	2
AZILAL.	TIFNI	10	2	2
AZILAL	TILOUGGUITE	10	2	2
AZILAL	TIMOULILT	10	2	2
AZILAL	TISQI	10	2	2
AZ1LAL	ZAOUIAT AHANSAL	10	2	2

PROVINCE D'ALISMAILIA

PROVINCE	COMMUNE	ViTESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
AL ISMAILIA	AIN JEMAA	10	2	2
AL ISMAILIA	AIN KARMA	10	2	2
AL ISMAILIA	AIN ORMA	10	2	2
AL ISMAILIA	AIT OUALLAL	10	2	2
AL ISMAILIA	'AL ISMAILIA	10	2	2
AL ISMAILIA	AL MACHOUAR STINA	10	2	2
AL ISMAILIA	DAR OUM SOLTANE	10	2	2
AL ISMAILIA	MAKNASSAT AZZAYTOUN	10	2	2
AL ISMAILIA	OUAD ROMMANE	10	2	2
AL ISMAILIA	TOULAL.	10	2	2

PROVINCE D'EL HAJEB

PROVINCE	COMMUNE	VITESSE	ZONE SKATONE	
EL HAJEB	AGOURAI	10	2	2
EL HAJEB	AIN TAOUJDATE	10	2	2
EL HAJEB	AIT BOUBIOMANE	10	2	2
EL HAJEB	AIT BOURZOUINE	10	2	2
EL HAJEB	AIT HARZV ALLAH	10	2	2
EL HAJEB	AIT NAAMANE	10	2	2
. EL HAJEB	AIT OUR HALFEN	10	2.	2
EL HAJEB	- AIT YAAZEM	10	2	2
EL HAJEB	BITIT	10	2	2
EL HAJEB	ELHAJEB	10	2	2
EL HAJEB	IQADDAR	10	2	2
EL HAJEB	HUOLHAL	10	2	2
EL HAJEB	LAQSIR	10	2	2
Et. HAJEB	RAS IJERRI	10	2	2
EL HAJEB	SBAA AIYOUN	10	2	2
EL HAJEB	TAMCHACHATE	10	2	2

PROVINCE D'EL HAJEB

PROVINCE	COMMUNE	VITESSE	ANT SENTINE	
ERRACHIDIA	AARAB SEBRAH GHERIS	7	1	2
ERRACHIDIA	AARAB SEBBAH ZIZ	5	0	2
ERRACHIDIA	AGHBALOU N'KERDOUS	7	1	2
ERRACHIDIA	INAH TIA	7	1	2
ERRACHIDIA	- AIT YAHYA	7	1	2
ERRACHIDIA	ALNIF .	7	1	1
ERRACHIDIA	AMELLAGOU	7	1	2
ERRACHIDIA	AMOUGUER	7	1	2
ERRACHIDIA	AOUFOUS	7	1	2
ERRACHIDIA	ARFOUD	5	0	2
ERRACHIDIA	ASSOUL	7	1	2
ERRACHIDIA	BNI M'HAMED SUELMASSA	5	0	1
ERRACHIDIA	BOU AZMOU	7	1	2
ERRACHIDIA	BOUDNIB	7	1	2
ERRACHIDIA	CHORFA M'DAGHRA	7	1	2
ERRACHIDIA	ENNZALA	7	1	2
ERRACHIDIA	ERRACHIDIA	7	1	2
ERRACHIDIA	ERRICH	7	1	2
ERRACHIDIA	ERRISSANI	5	0	1
ERRACHIDIA	ERRTES	7	1	2
ERRACHIDIA	ESSFALAT	5	0	1

ERRACHIDIA	ESSIFA	7	1	1
ERRACHIDIA	ETTAOUS	5	0	1
ERRACHIDIA	FERKLA EL OULIA	7	1	2
ERRACHIDIA	FERKLA ESSOUFIA	7	1	2
ERRACHIDIA	FEZNA	7	1	2
ERRACHIDIA	GHERIS EL OULOUI	7	1	2
ERRACHIDIA	GHERIS ESSOUFLI	7	1	2
ERRACHIDIA	GOULMIMA	7	1	2
ERRACHIDIA	GOURRAMA	7	1	2
ERRACHIDIA	GUERS TIALLALINE	7	1	2
ERRACHIDIA	GUIR	7 .	1	2
ERRACHIDIA	H'SSYIA	7	1	1
ERRACHIDIA	IMILCHIL	10	2	2
ERRACHIDIA	JORF	7	1	1
ERRACHIDIA	LKHENG	7	1	2
ERRACHIDIA	MELAAB	7	1	2
ERRACHIDIA	MOULAY ALI CHERIF	5	. 0	1
ERRACHIDIA	M'SSICI	5	0	1
ERRACHIDIA	M'ZIZEL	7	1	2
ERRACHIDIA	OUAD NAAM	7	1	2
ERRACHIDIA	OUTERBAT	7	1	2
ERRACHIDIA	SIDI AAYAD	7	1	2
ERRACHIDIA	SIDI ALI	5	0	1
ERRACHIDIA	TADIGHOUST	7	1	2
ERRACHIDIA	TINEJDAD	7	1	2
ERRACHIDIA	ZAOUIAT SIDI HAMZA	7	1	2

PROVINCE D'IFRANE

PROVINCE	COMMUNE	VITESSE	zoni z się sięczi.	ASSET AND STATES
IFRANE	AIN LEUH	10	2	2
IFRANE	AZROU	10	2	2
IFRANE	BEN SMIM	10	2	2
IFRANE	DAYAT AOUA	10	2	2
IFRANE	IFRANE	10	2	2
IFRANE	OUAD IFRANE	10	2	2
IFRANE	SIDI EL MAKHFI	10	2	2
IFRANE	TIGRIGRA	10	2	2
IFRANE	TIMAHDITE	10	2	2
IFRANE	TIZGUITE	10	2	2

PROVINCE DE MEKNES-EL MENZEH

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIGNEEN ACCELERATION
MEKNES-EL MENZEH	BOUFAKRANE	10	2	2
MEKNES-EL MENZEH	CHARQAOUA	10	2	2
MEKNES-EL MENZEH	DKHISSA	10	2	2
MEKNES-EL MENZEH	HAMRYA	10	2	2
MEKNES-EL MENZEH	KARMET BEN SALEM	10	2	2
MEKNES-EL MENZEH	MAJJATE	10	2	2
MEKNES-EL MENZEH	MGHASSIYINE	10	2	2
MEKNES-EL MENZEH	MHAYA	10	2	2
MEKNES-EL MENZEH	MOULAY IDRISS ZERHOUN	10	2	2
MEKNES-EL MENZEH	NZALAT BNI AMAR	10	2	2
MEKNES-EL MENZEH	OUAD JDIDA	10	2	2
MEKNES-EL MENZEH	OUALILI	10	2	2
MEKNES-EL MENZEH	OUISLANE	10	2	2
MEKNES-EL MENZEH	SIDI ABDALLAH AL KHATYA	10	2	2
MEKNES-EL MENZEH	SIDI SLIMANE MOUL ALKIFANE	10	2	2

PROVINCE DE BOULEMANE

PROVINCE	COMMUNE	VITESSE	ZONIESSANGLIE EN VIELSE	ZONE SISMIQUE
BOULEMANE	AIT BAZZA	10	2	2
BOULEMANE	AIT EL MANE	10	2	2
BOULEMANE	ALMIS MARMOUCHA	10	2	2
BOULEMANE	BOULEMANE	7	1	2
BOULEMANE	EL MERS	10	2	2
BOULEMANE	EL ORJANE	10	2	2
BOULEMANE	ENJIL	10	2	2
BOULEMANE	ERMILA	10	2	2
BOULEMANE	FRITISSA	10	2	2
BOULEMANE	GUIGOU	10	2	2
BOULEMANE	IMOUZZER MARMOUCHA	7	1	2
BOULEMANE	KSABI MOULOUYA	10	2	2
BOULEMANE	MISSOUR	7	1	2
BOULEMANE	OUIZEGHT	10	2	2 .
BOULEMANE	OULAD ALI YOUSSEF	10	2	2
BOULEMANE	OUTAT EL HAJ	10	2	1
BOULEMANE	SERGHINA	10	2	2
BOULEMANE	SIDI BOUTAYEB	10	2	2

BOULEMANE	SKOURA M'DAZ	10	2	2
BOULEMANE	TALZEMT	10	2	2
BOULEMANE	TISSAF	10	2	1

PROVINCE DE FES EL JADID-DAR DBIBAGH

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
FES EL JADID-DAR DBIBAGH	AGDAL.	10	2	2
FES EL JADID-DAR DBIBAGH	MACHOUAR FES EL JADID	10	2	2
FES EL JADID-DAR DBIBAGH	OULAD TAYEB	10	2	2
FES EL JADID-DAR DBIBAGH	SAISS	10	2	2

PROVINCE DEFES-MEDINA

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE	ZONE SISMIQUE EN ACCELERATION
FES-MEDINA	AIN BIDA	10	2	2
FES-MEDINA	AIN KANSARA	10	2	2
FES-MEDINA	FES MEDINA J	10	2	2
FES-MEDINA	SIDI HARAZEM	10	2	2

PROVINCE DE SEFROU

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMICULE EN ACCELERATION
SEFROU	ADREJ	10	2	2
SEFROU	AGHBALOU AQORAR	10	2	2
SEFROU	AHL SIDI LAHCEN	10	2	2
SEFROU	AIN CHEGGAG	10	2	2
SEFROU	AIN TIMGUENAI	10	2	2
SEFROU	AIT SEBAA LAJROUF	10	2	2
SEFROU	AZZABA	10	2	2
SEFROU	BHALIL	10	.2	2
SEFROU	BIR TAM TAM	10	2	2
SEFROU	DAR EL HAMRA	10	2	2
SEFROU	EL MENZEL	10	2	2
SEFROU	IGHZRANE	10	2	2
SEFROU	IMOUZZER KANDAR	10	2	2
SEFROU	KANDAR SIDI KHIAR	10	2	2
SEFROU	LAANOUSSAR	10	2	2

	·			1.000
SEFROU	MTARNAGHA	10	2	2
SEFROU	OULAD MKOUDOU	10	2	2
SEFROU	RAS TABOUDA	10	2	2
SEFROU	RIBATE EL KHEIR	10	2	2
SEFROU	SEFROU	10	2	2
SEFROU	SIDI YOUSSEF BEN AHMED	10	2	2
SEFROU	TAFAJIGHT	10	2	2
SEFROU	TAZOUTA	10	. 2	2

PROVINCE DE ZOUAGHA-MOULAY YACOUB

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
ZOUAGHA-MOULAY YACOUB	AIN BOU ALI	10	2	2
ZOUAGHA-MOULAY YACOUB	AIN CHKEF	10	2	2
ZOUAGHA-MOULAY YACOUB	LAAJAJRA	10	2	2.
ZOUAGHA-MOULAY YACOUB	LOUADAINE	10	2	2
ZOUAGHA-MOULAY YACOUB	MIKKES	10	2	2
ZOUAGHA-MOULAY YACOUB	MOULAY YACOUB	10	2	2
ZOUAGHA-MOULAY YACOUB	OULAD MIMOUN	10	2	2
ZOUAGHA-MOULAY YACOUB	SEBAA ROUADI	10	2	2
ZOUAGHA-MOULAY YACOUB	SEBT LOUDAYA	10	2	2
ZOUAGHA-MOULAY YACOUB	SIDI DAOUD	10	2	2
ZOUAGHA-MOULAY YACOUB	ZOUAGHA	10	2	2

PROVINCE D'AL HOCEIMA

PROVINCE	COMMUNE	VITESSE	ZOVE SISMICATE EX VITESE	Z/oN/Scientifoti Zanasanian
AL HOCEIMA	ABDELGHAYA SOUAHEL	13	3	4
AL HOCEIMA	AIT KAMRA	17	4	4
AL HOCEIMA	AIT YOUSSEF OUALI	17	4	4
AL HOCEIMA	AL HOCEIMA	17	4	4

AL HOCEIMA	ARBAA TAOURIRT	13	3	4
AL HOCEIMA	BNI ABDALLAH	17	4	4
AL HOCEIMA	BNI AHMED IMOUKZAN	13	3	4
AL HOCEIMA	BNI AMMART	13	3	4
AL HOCEIMA	BNI 8CHIR	13	3	4
AL HOCEIMA	BNI BOUAYACH	17	4	4
AL HOCEIMA	BNI BOUCHIBET	13	3	4
AL HOCEIMA	BNI BOUFRAH	17	4	4
AL HOCEIMA	BNI BOUNSAR	13	3	4
AL HOCEIMA	BNI GMIL	17	4	4
AL HOCEIMA	BNI GMIL MAKSOULINE	17	4	4
AL HOCEIMA	BNI HAFIDA	17	4	4
AL HOCEIMA	CHAKRANE	17	4	4
AL HOCEIMA .	IMRABTEN	17	4	4
AL HOCEIMA	IMZOUREN	17	4	4
AL HOCEIMA	ISSAGUEN	13	3	4
AL HOCEIMA	IZEMMOUREN	17	4	4
AL HOCEIMA	KETAMA	13	3	4
AL HOCEIMA	LOUTA	17	4	4
AL HOCEIMA	MOULAY AHMED CHERIF	17	4	4
AL HOCEIMA	NEKKOUR	17	4	4
AL HOCEIMA	ROUADI	17	4	4
AL HOCEIMA	SENADA	17	4	4
AL HOCEIMA	SIDI BOUTMIM	17	4	4
AL HOCEIMA	SIDI BOUZINEB	13	3	4
AL HOCEIMA	TAGHZOUT	13	3	4
AL HOCEIMA	TAMSAOUT	13	3	4
AL HOCEIMA	TARGUIST	17	4	4
AL HOCEIMA	TIFAROUINE	17	4	4
AL HOCEIMA	ZAOUIAT SIDI ABDELKADER	17	4	4
AL HOCEIMA	ZARKAT	13	3	4

PROVINCE DE TAZA

PROVINCE	CONTRACÂNE	VITESSE		
		VIIILOSE		
TAZA	AIT SAGHROUCHEN	10	2	2
TAZA	AJDIR	13	3	4
TAZA	AKNOUL	13	3	3
TAZA	ASSEBBAB	10	2	2
TAZA	BAB BOUDIR	10	2	2
TAZA	BAB MARZOUKA	10	2	3
TAZA	BARKINE	10	2	2
TAZA	BNI FRASSEN	10	2	2
TAZA	BNI FTAH	10	2	3
TAZA	BNI LENT	10	2	3
TAZA	BOUCHFAA	10	2	2
TAZA	BOUHLOU	10	2	2
TAZA	BOURD	13	3	4
TAZA	BOUYABLANE	10	2	2
TAZA	BRAGHA .	10	2	3
TAZA	EL GOUZATE	10	2	3
TAZA	GALDAMANE	10	2	3
TAZA	GHIATA AL GHARBIA	. 10	2	2
TAZA	GUERCIF	10	2	2
TAZA	GZENAYA AL JANOUBIA	13	3	3
TAZA	HOUARA OULAD RAHO	10	2	2
TAZA	JBARNA	10	2	3
TAZA	KAF EL GHAR	10	2	3
TAZA	LAMRIJA	10	2	3 2
TAZA	MAGHRAOUA	10	2	2
TAZA	MATMATA	10	2	2
TAZA	MAZGUITAM	10	2	3
TAZA	MEKNASSA ACHARQIA	10	2	3
TAZA	MEKNASSA ALGHARBIA	10	2	3
TAZA	MSILA	10	2	3
TAZA	OUAD AMLIL	10	2	2
TAZA	OULAD BOURIMA	10	2	3
TAZA	OULAD CHRIF	10	2	3
TAZA	OULAD ZBAIR	10	2	3
TAZA	RAS LAKSAR	10	2	2
TAZA	RBAA EL FOUKI	10	2	3
TAZA	SAKA	10	2	1
TAZA	SIDI ALI BOURAKBA	13	3	3
TAZA	SMIAA	10	2	2
TAZA	TADDART	10	2	3
TAZA	TAHLA	10	2	2

				NA-144
TAZA	TAIFA	10	2	3
TAZA	TAINASTE	13	3	3
TAZA	TAZA AL OULIA	10	2	3
TAZA	TAZA EL JADIDA	10	2	3
TAZA	TAZARINE	10	2	2
TAZA	, TIZI OUASLI	13	3	3
TAZA	TRAIBA	10	2	3
TAZA	ZRARDA	10	2	. 2

PROVINCE DE TAOUNATE

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN: ACCELERATION
TAOUNATE	AIN AICHA	10	2	2
TAOUNATE	AIN LEGDAH	10	2	2
TAOUNATE	AIN MAATOUF	10	2	2
TAOUNATE	AIN MEDIOUNA	10	2	3
TAOUNATE	BNI OULID	10	2	3
TAOUNATE	BNI OUNJEL TAFRAOUT	13	3	3
TAOUNATE	BNI SNOUS	10	2	2
TAOUNATE	BOUADEL	10	2	3
TAOUNATE	BOUAROUSS	10	2	2
TAQUNATE	BOUCHABEL	10	2	2
TAOUNATE	BOUHOUDA	13	3	3
TAOUNATE	EL BIBANE	10	2	3
TAOUNATE	EL BSABSA	10	2	`2
TAOUNATE	FENNASSA BAB EL HIT	13	3	3
TAOUNATE	GALAZ	10	2	2
TAOUNATE	GHAFSAI	10	2	3
TAOUNATE	GHOUAZI	10	2	2
TAOUNATE	JBABRA	10	2	2
TAOUNATE	KARIAT BA MOHAMED	10	2	2
TAOUNATE	KHLALFA	13	3	3
TAOUNATE	KISSANE	10	2	2
TAOUNATE	LOULJA	10	2	2
TAOUNATE	MESSASSA	10	2	2
TAOUNATE	MEZRAOUA	10	2	2
TAOUNATE	MKANSA	10	2	2
TAOUNATE	MOULAY ABDELKRIM	10	2	2
TAOUNATE	MOULAY BOUCHTA	10	2	2
TAOUNATE	OUAD JEMAA	10	2	2
TAOUNATE	OUDKA	10	2	3
TAOUNATE	OULAD AYYAD	10	2	2
TAOUNATE	OULAD DAOUD	10	2	2
TAOUNATE	OURTZAGH	10	2	2

5.99	Commence of the control of the contr		en al regional de la company de la compa	4.47.044ahani - Mainter 1911 - Marier
TAOUNATE	OUTABOUABANE	10	2	2
TAOUNATE	RAS EL OUAD	10	2	2
TAOUNATE	RATBA	13	3	3
TAOUNATE	RGHIOUA	10	2	3
TAOUNATE	SIDI EL ABED	10	2	2
TAOUNATE	SIDI LHAJ M'HAMED	10	2	3
TAOUNATE	SIDI M'HAMED BEN LAHCEN	10	2	2
TAOUNATE	SIDI MOKHFI	10	2	3
TAOUNATE	SIDI YAHYA BNI ZEROUAL	10	2	3 .
TAOUNATE	TABOUDA	10	2	3
TAOUNATE	TAFRANT	10	2	2
TAOUNATE	TAMEDIT	13	3	3
TAOUNATE	TAOUANTE	10	2	3
TAOUNATE	THAR ESSOUK	13	3	3
TAOUNATE	TIMEZGANA .	13	3	3
TAOUNATE	TISSA	10	2	2
TAOUNATE	ZRIZER	13	3	3
			•	3

PROVINCE DE CHEFCHAQUEN

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
CHEFCHAOUEN	AIN BEIDA	13	3	3
CHEFCHAOUEN	AMTAR	13	3	4
CHEFCHAOUEN	ASJEN	13	3	2
CHEFCHAOUEN	BAB BERRED	13	3	3
CHEFCHAOUEN	BAB TAZA	13	3	3
CHEFCHAOUEN	BNI AHMED CHERQIA	13	3	3
CHEFCHAOUEN	BNI AHMED GHARBIA	10	2	3
CHEFCHAOUEN	BNI BOUZRA	13	3	3
CHEFCHAOUEN	BNI DARKOUL	13	3	3
CHEFCHAOUEN	BNI FAGHLOUM	13	3	- 3
CHEFCHAOUEN	BNI MANSOUR	13	+ - 3 - 1	3
CHEFCHAOUEN	BNI RZINE	13	3	4
CHEFCHAOUEN	BNI SALAH	13	3	3
CHEFCHAOUEN	BNI SELMANE	13	3	3
CHEFCHAOUEN	BNI SMIH	13	3	4
CHEFCHAOUEN	BRIKCHA	13	3	2
CHEFCHAOUEN	CHEFCHAOUENE	13	3	3
CHEFCHAOUEN	DERDARA :	13	3	3
CHEFCHAOUEN	FIFI .	13	3	3
CHEFCHAOUEN	IOUNANE	13	3	4
CHEFCHAOUEN	KALAAT BOUQORRA	10	2	3
CHEFCHAOUEN	LAGHDIR	13	3	3
CHEFCHAOUEN	MANSOURA	13	3	3

CHEFCHAOUEN	MOQRISSAT	13	3	3
CHEFCHAOUEN	MTIOUA	17	4	4
CHEFCHAOUEN	OUAD MALHA	13	3	3
CHEFCHAOUEN	OUAOUZGANE	17	4	4
CHEFCHAOUEN	STEHA	13	3	3
CHEFCHAOUEN	TALAMBOTE	13	3	3
CHEFCHAOUEN	TAMOROT	13	3	4
CHEFCHAOUEN	TANAQOUB	13	3	3
CHEFCHAOUEN	TASSIFT	13	3	3
CHEFCHAOUEN	TIZGANE	13	3	j
CHEFCHAOUEN	ZOUMI	10	2	2

PROVINCE DE FAHS-ANJRA

PROVINCE	COMMUNE	VITESSE	ZONESISMIQUE ENVITESSE	ZONE SISMICIUE EN ACCELERATION
FAHS-ANJRA	AL BAHRAOYINE	13	3	3
FAHS-ANJRA	ANJRA	13	3	3
FAHS-ANJRA	JOUAMAA	13	3	3
FAHS-ANJRA	KSAR EL MAJAZ	17	4	3
FAHS-ANJRA	KSAR SGHIR	13	3	3
FAHS-ANJRA	LAAOUAMA	13	3	3
FAHS-ANJRA	MALLOUSSA	13	3	3
FAHS-ANJRA	TAGHRAMT	17	4	3

PROVINCE DE LARACHE

PROVINCE	COMMUNE	VITESSE	AONETISMOUE PASSESSES	ZONE SISMICUE EN ACCELERATION
LARACHE	AYACHA	13	3	3
LARACHE	BNI AROUSS	13	3	3
LARACHE	BNI GARFETT	13	3	3
LARACHE	BOU JEDYANE	13	3	3
LARACHE	KSAR BJIR	13	3	3
LARACHE	KSAR EL KEBIR	13	3	3
LARACHE	LAOUAMRA	13	3	3
LARACHE	LARACHE	13	3	3
LARACHE	OULAD OUCHICH	13	3	3
LARACHE	RISSANA CHAMALIA	13	3	3
LARACHE	RISSANA JANOUBIA	13	3	3
LARACHE	SAHEL	13	3	3
LARACHE	SOUAKEN	13	3	3
LARACHE	SOUK L'QOLLA	13	3	3
LARACHE	SOUK TOLBA	13	3	3
LARACHE	TATOFT	13	. 3	1 2

LARACHE	TAZROUTE	13	3	3	200
LARACHE	ZAAROURA	13	3	3	
LARACHE	ZOUADA	13	3	3	

PROVINCE DE TANGER-ASSILAH

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
TANGER-ASSILAH	AL MANZLA	13	3	3
TANGER-ASSILAH	AQOUASS BRIECH	13	3	3
TANGER-ASSILAH	ASSILAH	13	3	3
TANGER-ASSILAH	AZZINATE	13	3	3
TANGER-ASSILAH	BNI MAKADA	13	3	3
TANGER-ASSILAH	BOUKHALEF	13	3	3
TANGER-ASSILAH	CHARF	13	3	3
TANGER-ASSILAH	DAR CHAOUI	13	3	3
TANGER-ASSILAH	LKHALOUA	13	3	3
TANGER-ASSILAH	SAHEL CHAMALI	13	3	3
TANGER-ASSILAH	SIDI EL YAMANI	13	3	3
TANGER-ASSILAH	TANGER	13	3	3

PROVINCE DE TETOUAN

PROVINCE	COMMUNE	VITESSE	ZONE SISMIQUE EN VITESSE	ZONE SISMIQUE EN ACCELERATION
TETOUAN	AIN LAHSAN	13	3	3
TETOUAN	AL HAMRA	13	3	3
TETOUAN	AL KHARROUB	13	3	3
TETOUAN	AL OUAD	13	, 3	3
TETOUAN	ALLYENE	17	1	3
TETOUAN	. AZLA	17	4	3
TETOUAN	BGHAGHZA	13	3	3
TETOUAN	. BNI HARCHEN	13	3	3
TETOUAN	BNI IDDER	13	3	3
TETOUAN	BNI LEIT	13	. 3	3
TETOUAN	BNI SAID	13	3	3
TETOUAN	DAR BNI KARRICH	13	1 3 1	3
TETOUAN	FNIDQ	17	! 4	3
TETOUAN	, JBEL LAHBIB	13	. 3	3
TETOUAN	MALLALIENNE	17	4	3
TETOUAN	MARTIL	17	4	3
TETOUAN	M'DIQ	17	4	3
TETOUAN	OUAD LAOU	1 13	3 !	3
TETOUAN	OULAD ALI MANSOUR	13	3	3
TETOUAN	SADDINA	13	3	3
TETOUAN	SAHTRYINE	. 13	3 ;	3

TETOUAN	SEBTA	17	4	3
TETOUAN	SOUK KDIM	13	3	3
TETOUAN	TETOUAN AL AZHAR	13	3	3
TETOUAN	TETOUAN SIDI AL MANDRI	17	4	3
TETOUAN	ZAITOUNE	13	3	3
TETOUAN	ZAOUIAT SIDI KACEM	13	3	3
TETOUAN	ZINAT	13	3	3

Arrêté du ministre de l'agriculture et de la pêche maritime n° 2518-13 du 4 chaoual 1434 (12 août 2013) modifiant et complétant l'arrêté du ministre de l'agriculture et de la réforme agraire n° 1536-87 du 13 journada I 1408 (4 janvier 1988) pris pour l'application des dispositions des articles 3, 6 et 7 du décret n° 2-86-551 du 20 moharrem 1408 (15 septembre 1987) réglementant les encouragements de l'Etat en vue de l'intensification de la production animale.

LE MINISTRE DE L'AGRICULTURE ET DE LA PECHE MARITIME,

Vu l'arrêté du ministre de l'agriculture et de la réforme agraire n° 1536-87 du 13 journada I 1408 (4 janvier 1988) pris pour l'application des dispositions des articles 3, 6 et 7 du décret n° 2-86-551 du 20 moharrem 1408 (15 septembre 1987) réglementant les encouragements de l'Etat en vue de l'intensification de la production animale, tel qu'il a été modifié et complété, notamment son article 3.

ARRÊTE:

ARTICLE PREMIER. - L'article 3 de l'arrêté nº 1536-87 du 13 journada ! 1468 (4 janvier 1988) susvisé est modifié et complété ainsi qu'il suit :

« Article 3. – les races pures sont :
« - pour l'espèce bovine
«,
« - pour l'espèce ovine
« - pour l'espèce équine
« En outre :
« - les animaux de races bovines visées ci-dessus doivent « être âgés de 15 à 24 mois pour les mâles et de 08 à 24 mois « pour les femelles ayant
« améliorateur ;
(La suite sans changement.)

ART. 2. - Le présent arrêté sera publié au Bulletin officiel.

Rabat, le 4 chaoual 1434 (12 août 2013).

AZIZ AKHANNOUCH.

Arrêté conjoint du ministre de l'industrie, du commerce, de l'investissement et de l'économie numérique et du ministre de l'économie et des finances n° 2986-13 du 23 hija 1434 (29 octobre 2013) soumettant à un droit antidumping provisoire les importations de tôles d'acier laminées à chaud originaires de l'Union européenne et de la Turquie.

LE MINISTRE DE L'INDUSTRIE, DU COMMERCE, DE L'INVESTISSEMENT ET DE L'ECONOMIE NUMERIQUE,

LE MINISTRE DE L'ECONOMIE ET DES FINANCES,

Vu la loi n° 15-09 relative aux mesures de défense commerciale promulguée par le dahir n° 1-11-44 du 29 journada II 1432 (2 juin 2011), notamment ses articles 4, 23, 29, 31 et 32; Vu le décret n° 2-12-645 du 13 safar 1434 (27 décembre 2012) pris pour l'application de la loi n° 15-09 relative aux mesures de défense commerciale, notamment son article 29 :

Après avis de la commission de surveillance des importations,

ARRÊTENT:

ARTICLE PREMIER. – Les importations de tôles en acier laminées à chaud originaires de l'Union européenne et de la Turquie et classées aux positions tarifaires 7208, à l'exception du 7208.10 et 7208.40, et aux positions tarifaires 7211.13, 7211.14 et 7211.19, sont soumises, à compter de la date de publication du présent arrêté conjoint au « Bulletin officiel », et ce pour une durée de six (6) mois, à un droit antidumping provisoire selon le tableau figurant à l'annexe 1 du présent arrêté conjoint.

- ART. 2. Le droit antidumping provisoire prévu à l'article premier ci-dessus est consigné auprès de l'administration des douanes et impôts indirects pour sa liquidation définitive au profit du Trésor ou son remboursement aux importateurs concernés.
- ART. 3. Le droit antidumping provisoire prévu à l'article premier du présent arrêté conjoint s'applique sans préjudice de la clause transitoire prévue à l'article 13 du code des douanes et impôts indirects.
- ART. 4. Conformément aux dispositions de l'article 23 de la loi n° 15-09 susvisée relative aux mesures de défense commerciale, les raisons du choix de la méthodologie utilisée pour établir les marges de dumping sont indiquées à l'annexe 2 du présent arrêté conjoint.
- ART. 5. Le directeur général de l'administration des douanes et impôts indirects est chargé de l'application du présent arrêté conjoint.
- ART. 6. Le présent arrêté conjoint sera publié au Bulletin officiel.

Rabat, le 23 hija 1434 (29 octobre 2013).

Le ministre de l'industrie, du commerce, de l'investissement et de l'économie numérique, MOULAY HAFID EL ALAMI.

Le ministre de l'économie et des finances,
MOHAMED BOUSAID.

ANNEXE 1

Droit antidumping provisoire par exportateur à appliquer aux importations de tôles en acier laminées à chaud originaires de l'Union européenne et de la Turquie

EXPORTATEUR	ORIGINE	DROIT ANTIDUMPING PROVISOIRE
Arcelor mittal	Union européenne	29.12%
Tata steel	Union européenne	22.11%
Steel link	Union européenne	22.11%
Colakoglu	Torquie	0%
Erdemir	Turquie	0%
Autres exportateurs	Union européenne et Turquie	29.12%

ANNEXE 2

Raisons du choix de la méthodologie utilisée pour établir les marges de dumping

La marge de dumping a été déterminée individuellement pour chaque exportateur en procédant à une comparaison équitable entre les prix à l'exportation vers le Maroc des tôles d'acier laminées à chaud pratiqués par les exportateurs ayant collaboré à l'enquête et les prix de vente des tôles d'acier laminées à chaud sur les marchés domestiques des exportateurs (valeurs normales) durant la période d'enquête allant du ler janvier 2012 au 31 décembre 2012 et ce, conformément à l'article 9 de la loi n° 15-09 relative aux mesures de défense commerciale et l'article 9.b) du décret n° 2-12-645 pris pour son application.

Tel que prescrit par l'article 7 de la loi n° 15-09, les prix à l'exportation vers le Maroc ont été calculés; pour chaque type de produit. à partir des données relatives aux transactions d'exportation des tôles laminées à chaud effectuées par les exportateurs ayant collaboré à l'enquête au cours de la période susvisée.

Conformément aux dispositions de l'article 8 de la loi n° 15-09, les valeurs normales ont été déterminées, pour chaque type de produit, à partir des prix de ventes des exportateurs sur leurs marchés domestiques. Pour les transactions n'ayant pas été réalisées au cours d'opérations commerciales normales (vente à perte), la valeur normale a été déterminée sur la base de la valeur construite à partir du coût de production dans le pays d'origine majoré d'un montant représentant les frais d'administration et de commercialisation, les frais généraux et une marge bénéficiaire raisonnable.

Les prix à l'exportation et les valeurs normales ont été ajustés et rendus au même stade commercial « sortie usine » aux fins de la comparaison susvisée au premier paragraphe de la présente annexe. Cette comparaison a été effectuée par type de produit donnant lieu à des marges de dumping par type de produit également. Une moyenne pondérée de ces marges a permis d'aboutir aux marges de dumping pour chaque exportateur ayant collaboré à l'enquête.

Pour les autres exportateurs n'ayant pas collaboré à l'enquête, la marge de dumping a été établie sur la base des meilleurs renseignements disponibles qui comprennent notamment les renseignements fournis par les autres exportateurs et ce, conformément à l'article 21 de la loi n° 15-09.

S'agissant du niveau de la mesure à appliquer et en tenant compte des dispositions de l'article 29 de la loi n° 15-09, les droits antidumping ont été établis sur la base des marges de sous cotation évaluées pour les exportateurs ayant participé à l'enquête en comparant les prix de vente moyens des tôles importées au prix de vente moyen des tôles fabriquées localement.

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6204 du 10 moharrem 1435 (14 novembre 2013)

Arrêté du ministre délégué auprès du Chef du gouvernement chargé des affaires générales et de la gouvernance n° 3215-13 du 11 moharrem 1435 (15 novembre 2013) portant fixation des prix de vente de certains combustibles liquides.

LE MINISTRE DELEGUE AUPRES DU CIPE DU GOUVERNEMENT CHARGE DES AFFAIRES GENERALES ET DE LA GOUVERNANCE.

Vu la loi n° 06-99 sur la liberté des prix et de la concurrence, promulguée par le dahir n° 1-00-225 du 2 rabii 1 1421 (5 juin 2000);

Vu le décret n° 2-00-854 du 28 journada II 1422 (17 septembre 2001) pris pour l'application de la loi susvisée n° 06-99 sur la liberté des prix et de la concurrence :

Vu le décret n° 2-13-836 du 9 moharrem 1435 (13 novembre 2013) portant délégation d'attributions et de pouvoirs au ministre délégué auprès du Chef du gouvernement chargé des affaires générales et de la gouvernance ;

Vu l'arrêté du Chef du gouvernement n° 3-69-13 du 11 chaoual 1434 (19 août 2013) instituant un système d'indexation partielle des prix de certains combustibles liquides ; Vu l'arrêté du ministre délégué auprès du Premier ministre chargé des affaires économiques et générales n° 2043-10 du 30 rejeb 1431 (13 juillet 2010) fixant la liste des produits et services dont les prix sont réglementés;

Vu l'arrêté du ministre délégué auprès du Premier ministre chargé des affaires économiques et générales n° 2380-06 du 30 ramadan 1427 (23 octobre 2006) relatif à la fixation des prix de reprise en raffinerie et de vente des combustibles liquides et du butane, cel qui le a été modifié et complété;

Après avis de la commission interministérielle des prix,

ARRÊTE:

ARTICLE PREMIER. – Les prix de vente maxima du supercarburant, du gas-oti et du fuel-oil n° 2 résultant du système d'indexation partielle des prix de certains combustibles liquides institué par l'arrêté susvisé n° 3-69-13 sont arrêtés comme suit :

- supercarburant ;	1202,00 DH/HL;
– gas-oil :	. 854,00 DH/HL;
- fuel-oil n° 2:	5076,63 DH/T.

ART. 2. – Le présent arrêté, qui abroge l'arrêté n° 2688-13 du 6 kaada 1434 (13 septembre 2013) relatif au même objet, sera publié au *Bulletin officiel* et prendra effet à compter du 16 novembre 2013 à zéro heure.

Rabat, le 11 moharrem 1435 (15 novembre 2013).

MOHAMMED LOUAFA.

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » nº 6204 bis du 11 moharrem 1435 (15 novembre 2013).

TEXTES PARTICULIERS

Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 1846-13 du 1^{er} chaabane 1434 (10 juin 2013) complétant l'arrêté n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADRES.

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété;

Après avis de la commission sectorielle des sciences de la santé du 7 mai 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins.

ARRÊTE:

ARTICLE PREMIER. – L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Article premier. – La liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1^{er} alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire – série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

« - Fédération de Russie :

« - Qualification en médecine générale, docteur en médecine
« délivrée par l'Université d'Etat de médecine de Riazan,
« Fédération de Russie - le 23 juin 2010, assortie d'un stage
« de deux années, du 3 avril 2011 au 19 juin 2012 au Centre
« hospitalier Hassan II de Fès et du 17 juillet 2012 au
« 14 avril 2013 au Centre hospitalier régional de Meknès,
« validé par la Faculté de médecine et de pharmacie de Fès « le 25 avril 2013. »

«

«

ART. 2. – Le présent arrêté sera publié au Bulletin officiel.

Rabat, le 1^{er} chaabane 1434 (10 juin 2013).

LAHCEN DAOUDI.

Le texte en langue arabé a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013). Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 1847-13 du 1^{er} chaabane 1434 (10 juin 2013) complétant l'arrêté n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADPES,

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété;

Après avis de la commission sectorielle des sciences de la santé du 7 mai 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins.

ARRÊTE:

ARTICLE PREMIER. – L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Article premier. – La liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1er alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire – série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

« - Roumanie :

« – Titlul doctor-medic in domeniul sanatate, specializarea « medicina, délivré par Facultatea medicina, Universitatii « de medicina si farmacie « Victor Babes » Din Timisoara, « Roumanie - le 2 novembre 2012, assorti d'une attestation « d'évaluation des connaissances et des compétences « délivrée par la Faculté de médecine et de pharmacie de « Casablanca - le 23 avril 2013. »

«

«

ART. 2. – Le présent arrêté sera publié au Bulletin officiel.

Rabat, le 1^{er} chaabane 1434 (10 juin 2013).

LAHCEN DAOUDI.

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013).

Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 1856-13 du 1^{er} chaabane 1434 (10 juin 2013) complétant l'arrêté n° 2963-9" du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR. DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADRES,

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété,

Après avis de la commission sectorielle des sciences de la santé du 7 mai 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins.

ARRÊTE:

ARTICLE PREMIER. - L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Anicle premier. – La liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1er alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire – série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

« -- Ukraine :

«

« – Qualification du médecin, docteur en médecine, en
« spécialité médecine générale délivrée par l'Université
« nationale de médecine de Kharkiv, Ukraine - le 25 juin 2010,
« assortie d'un stage de deux années : une année au Centre
« hospitalier Ibn Rochd de Casablanca et une année à
« l'hôpital Hassan II de Khouribga, validé par la Faculté de
« médecine et de pharmacie de Casablanca - le 23 avril 2013, »

ART. 2. – Le présent arrêté sera publié au *Bulletin officiel*.

Rabat, le 1^{er} chaabane 1434 (10 juin 2013).

LAHCEN DAQUDI

Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 2121-13 du 25 chaabane 1434 (4 juillet 2013) complétant l'arrêté n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADRES,

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre, 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété;

Après avis de la commission sectorielle des sciences de la santé du 4 juin 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins,

ARRÊTE:

ARTICLE PREMIER, - L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Article premier. - 1.a liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1er alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire - série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

«

«

« – Ukraine :

« - Qualification du médecin, docteur en médecine, en « spécialité médecine générale, délivrée par l'Université « nationale de médecine de Kharkiv, Ukraine - le 25 juin 2010, « assortie d'un stage de deux années, du 8 mars 2011 au « 4 avril 2012 au Centre hospitalier universitaire de « Casablanca et du 25 avril 2012 au 25 avril 2013 au Centre « hospitalier préfectoral Mohamed V d'Ain Sebaa Hay « Mohammadi de Casablanca validé par la Faculté de « médecine et de pharmacie de Casablanca - le 6 mai 2013, »

ART. 2. – Le présent arrêté sera publié au *Bulletin officiel*.

Rabat. le 25 chaabane 1434 (4 juillet 2013).

LAHCEN DAOUDI

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013).

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013).

Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 2122-13 du 25 chaabane 1434 (4 juillet 2013) complétant l'arrêté n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADRES.

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété;

Après avis de la commission sectorielle des sciences de la santé du 4 juin 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins,

ARRÊTE :

ARTICLE PREMIER. – L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Article premier. – La liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1er alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire – série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

«

«

« – Ukraine :

« - Qualification médecin, docteur en médecine - en « spécialité médecine générale, délivrée par l'Université « d'Etat de médecine d'Odessa, Ukraine - le 13 juin 2006, « assortie d'un stage de deux années, du 9 mars 2011 au « 8 mars 2012 au Centre hospitalier Ibn Sina de Rabat et « du 21 mars 2012 au 20 mars 2013 au Centre hospitalier « provincial de Tétouan et d'une attestation d'évaluation « des connaissances et des compétences délivrée par la « Faculté de médecine et de pharmacie de Rabat - le « 15 mai 2013. »

ART. 2. - Le présent arrêté sera publié au Bulletin officiel.

Rabat, le 25 chaabane 1434 (4 juillet 2013).

LAHCEN DAOUDI.

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013). Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 2125-13 du 25 chaabane 1434 (4 juillet 2013) complétant l'arrêté n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADRES,

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété;

Après avis de la commission sectorielle des sciences de la santé du 4 juin 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins,

ARRÊTE :

ARTICLE PREMIER. – L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Article premier. - La liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1er alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire – série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

«

«

« - Fédération de Russie :

« - Qualification en médecine générale, docteur en « médecine délivrée par l'Université d'Etat de médecine de « Riazan, Fédération de Russie - le 23 juin 2010, assortie « d'un stage de deux années : une année au Centre « hospitalier universitaire de Casablanca et une année au « Centre hospitalier préfectoral Al Hassani de « Casablanca, validé par la Faculté de médecine et de « pharmacie de Casablanca - le 21 mai 2013. »

ART. 2. – Le présent arrêté sera publié au Bulletin officiel.

Rabat, le 25 chaabane 1434 (4 juillet 2013).

LAHCEN DAGUDI.

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013).

Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 2126-13 du 25 chaabane 1434 (4 juillet 2013) complétant l'arrêté n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADRES.

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété;

Après avis de la commission sectorielle des sciences de la santé du 4 juin 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins,

ARRÊTE:

ARTICLE PREMIER. – L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Article premier. – La liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1^{er} alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire – série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

« - Fédération de Russie :

« - Qualification en médecine générale, docteur en « médecine délivrée par l'Université d'Etat de médecine de « Riazan, Fédération de Russie - le 23 juin 2010, assortie « d'un stage de deux années : une année au Centre « hospitalier universitaire de Casablanca et une année au « Centre hospitalier préfectoral de Ain Chock de « Casablanca, validé par la Faculté de médecine et de « pharmacie de Casablanca - le 21 mai 2013. »

«

«

ART. 2. – Le présent arrêté sera publié au Bulletin officiel.

Rabat, le 25 chaabane 1434 (4 juillet 2013).

LAHCEN DAOUDI.

Arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la formation des cadres n° 2129-13 du 25 chaabane 1434 (4 juillet 2013) complétant l'arrêté n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine.

LE MINISTRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA FORMATION DES CADRES,

Vu l'arrêté du ministre de l'enseignement supérieur, de la recherche scientifique et de la culture n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) fixant la liste des diplômes reconnus équivalents au diplôme de docteur en médecine, tel qu'il a été modifié et complété;

Après avis de la commission sectorielle des sciences de la santé du 4 juin 2013 ;

Après avis du ministre de la santé et du conseil national de l'Ordre national des médecins,

ARRÊTE:

ARTICLE PREMIER. - L'article premier de l'arrêté susvisé n° 2963-97 du 2 chaabane 1418 (3 décembre 1997) est complété comme suit :

« Article premier. – La liste des diplômes reconnus « équivalents au diplôme de docteur en médecine visé à l'article 4 « (1er alinéa) de la loi susvisée n° 10-94, assortis du baccalauréat de « l'enseignement secondaire – série sciences expérimentales ou « sciences mathématiques ou d'un diplôme reconnu équivalent, est « fixée ainsi qu'il suit :

« - Ukraine :

« - Qualification de médecin, docteur en médecine en « spécialité médecine générale, délivrée par l'Université « d'Etat de médecine de Zaporojie, Ukraine - le 24 juin 2005, « assortie d'un stage de deux années : du 13 avril 2011 au « 12 avril 2012 au Centre hospitalier Hassan II de Fès et « du 20 avril 2012 au 25 avril 2013 au Centre hospitalier « régional de Meknès, validé par la Faculté de médecine et « de pharmacie de Fès - le 8 mai 2013. »

«

«

ART. 2. – Le présent arrêté sera publié au Bulletin officiel.

Rabat, le 25 chaabane 1434 (4 juillet 2013).

LAHCEN DAQUDI.

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013).

Le texte en langue arabe a été publié dans l'édition générale du « Bulletin officiel » n° 6200 du 25 hija 1434 (31 octobre 2013).

Arrêté du ministre de l'énergie, des mines, de l'eau et de l'environnement n° 2153-13 du 23 chaabane 1434 (2 juillet 2013) instituant la cession totale des parts d'intérêt détenues par la société « Canamens Energy Morocco s.a.r.l. » dans les permis de recherche d'hydrocarbures dits « ESSAOUIRA OFFSHORE I à VII » au profit de la société « Kosmos Energy Deepwater Morocco ».

LE MINISTRE DE L'ENERGIE, DES MINES, DE L'EAU ET DE L'ENVIRONNEMENT,

Vu la loi n° 21-90 relative à la recherche et à l'exploitation des gisements d'hydrocarbures, promulguée par le dahir n° 1-91-118 du 27 ramadan 1412 (1er avril 1992), telle qu'elle a été modifiée et complétée par la loi n° 27-99 promulguée par le dahir n° 1-99-340 du 9 kaada 1420 (15 février 2000), notamment son article 8 ;

Vu le décret n° 2-93-786 du 18 journada I 1414 (3 novembre 1993) pris pour l'application de la loi n° 21-90 susvisée, tel qu'il a été modifié et complété par le décret n° 2-99-210 du 9 hija 1420 (16 mars 2000), notamment son article 19 ;

Vu l'arrêté conjoint du ministre de l'énergie, des mines, de l'eau et de l'environnement et du ministre de l'économie et des finances n° 1799-12 du 10 journada I 1433 (2 avril 2012) approuvant l'accord pétrolier « ESSAOUIRA OFFSHORE » conclu le 10 chaoual 1432 (9 septembre 2011), entre l'Office national des hydrocarbures et des mines et les sociétés « Kosmos Energy Deepwater Morocco » et « Canamens Energy Morocco s.a.r.l.»;

Vu les arrêtés du ministre de l'énergie, des mines, de l'eau et de l'environnement n° 2103-12 au 2109-12 du 26 journada II 1433 (18 mai 2012) accordant les permis de recherche d'hydrocarbures dits « ESSAOUIRA OFFSHORE I à VII » à l'Office national des hydrocarbures et des mines et aux sociétés « Kosmos Energy Deepwater Morocco » et « Canamens Energy Morocco s.a.r.l » ;

Vu l'arrêté conjoint du ministre de l'énergie, des mines, de l'eau et de l'environnement et du ministre de l'économie et des finances n° 1889-13 du 23 rejeb 1434 (3 juin 2013) approuvant l'avenant n° 1 à l'accord pétrolier « ESSAOUIRA OFFSHORE » conclu, le 6 safar 1434 (19 décembre 2012), entre l'Office national des hydrocarbures et des mines et les sociétés « Kosmos Energy Deepwater Morocco » et « Canamens Energy Morocco s.a.r.l. ».

ARRÊTE:

ARTICLE PREMIER. – La société « Canamens Energy Morocco s.a.r.l. » cède 100% de ses parts d'intérêt qu'elle détient dans les permis de recherche dénommés « ESSAOUIRA OFFSHORE I à VII » au profit de la société « Kosmos Energy Deepwater Morocco ». Les nouvelles parts d'intérêt deviennent :

- l'Office national des hydrocarbures et des mines : 25 %;
- Kosmos Energy Deepwater Morocco: 75 %.
- ART. 2. La cession totale des parts d'intérêt portera sur la totalité du périmètre couvert par le permis de recherche susvisé.

ART. 3. – La société « Kosmos Energy Deepwater Morocco » prend à son compte tous les engagements souscrits par la société « Canamens Energy Morocco s.a.r.l. » et bénéficiera de tous les droits et privilèges accordés à cette dernière, et ce, au titre de la loi relative à la recherche et à l'exploitation des gisements d'hydrocarbures susvisée et de l'accord pétrolier précité.

ART. 4. – Le présent arrêté sera notifié aux intéressés et publié au Bulletin officiel.

Rabat, le 23 chaabane 1434 (2 juillet 2013).

FOUAD DOUIRI.

Prix du numéro au siège de l'Imprimerie Officielle : 20 DH

Prix du numéro chez les dépositaires agréés : 22 DH

Application de l'arrêté conjoint du Secrétaire Général du Gouvernement et du Ministre des Finances et de la Privatisation n° 2196-04 du 11 chaoual 1425 (24 novembre 2004)