

Government Gazette Staatskoerant REPUBLIC OF SOUTH AFRICA

Vol. 647

10 May Mei 2019

No. 42451

Part 1 of 2

N.B. The Government Printing Works will not be held responsible for the quality of "Hard Copies" or "Electronic Files" submitted for publication purposes

42451

AIDS HELPLINE: 0800-0123-22 Prevention is the cure

For purposes of reference, all Proclamations, Government Notices, General Notices and Board Notices published are included in the following table of contents which thus forms a weekly index. Let yourself be guided by the gazette numbers in the righthand column:

Alle Proklamasies, Goewermentskennisgewings, Algemene Kennisgewings en Raadskennisgewings gepubliseer, word vir verwysingsdoeleindes in die volgende Inhoudopgawe ingesluit wat dus weeklikse indeks voorstel. Laat uself deur die Koerantnommers in die regterhandse kolom lei:

Weekly Index

Weeklikse Indeks

No.	Page No.	Gazette No.	No.	Bladsy Ko No.	oerant No.
GOVERNMENT NOTICE			GOEWERMENTSKENNISGEWING	s	
Agriculture, Forestry and Fisheries, Department	of		Landbou, Bosbou en Visserye, Departement va	n	
599 Conservation of Agricultural Resources Act (43/1984) :Notice of appointment of members of the Conservation Advisory Board	19	42417	599 Conservation of Agricultural Resources Act (43/1984) :Notice of appointment of members of the Conservation Advisory Board	:	42417
600 Animal Diseases Act (35/1984) :Call for public comment with regard to African horse sickness	24	42417	600 Animal Diseases Act (35/1984) :Call for public comment with regard to African horse sickness		42417
Arts and Culture, Department of			Kuns en Kultuur, Departement van		
622 National Heritage Resources Act (25/1999) :Declaration of Sites within the Bo-Kaap National Heritage Sites	4	42429	622 National Heritage Resources Act (25/1999) :Declaration of Sites within the Bo-Kaap National Heritage Sites		42429
Basic Education, Department of			Basiese Onderwys, Departement van		
633 The South African Schools Act (84/1996) :Amendments to the Regulations pertaining to the Conduct, Administration and Management of the National Senior Certificate Examination	4	42430	633 The South African Schools Act (84/1996) :Amendments to the Regulations pertaining to the Conduct, Administration and Management of the National Senior Certificate Examination		42430
634 National Education Policy Act (27/1996) :Amendments to the Policy Pertaining to the Conduct, Administration and Management of the National Senior Certificate Examination	27	42430	634 National Education Policy Act (27/1996) :Amendments to the Policy Pertaining to the Conduct, Administration and Management of the National Senior Certificate Examination		42430
Economic Development, Department of			Ekonomiese Ontwikkeling, Departement van		
601 South Africa Competition Act (89/1998) :Memorandum of Understanding between CCSA and International Finance Corpora- tion	26	42417	601 South Africa Competition Act (89/1998) :Memorandum of Understanding between CCSA and International Finance Corpora- tion		42417
Energy, Department of			Energie, Departement van		
602 Electricity Act (41/1987) :License fees payable by licensed generators of electricity	30	42417	602 Electricity Act (41/1987) :License fees payable by licensed generators of electricity	•	42417
603 Electricity Act (41/1987) :License Fees payable by licensed generators of electricity	31	42417	603 Electricity Act (41/1987) :License Fees payable by licensed generators of electricity		42417
R.619 Petroleum Products Act (120/1977) :Amendment of the regulations in respect of petroleum products	3	42427	R.619 Petroleum Products Act (120/1977) :Amendment of the regulations in respect of petroleum products		42427
R.620 Petroleum Products Act (120/1977) :Maximum Retail Price for Liquefied Petroleum Gas	5	42427	R.620 Petroleum Products Act (120/1977) :Max- imum Retail Price for Liquefied Petroleum Gas	l	42427
R.621 Petroleum Products Act (120/1977) :Regulations in respect of the single maximum national retail price for illuminating paraffin	7	42427	R.621 Petroleum Products Act (120/1977) :Regulations in respect of the single maximum national retail price for illuminating paraffin	l	42427

No.	Page (Gazette No.	No.	Page No.	Gazette No.
Higher Education and Training, Department of			Hoër Onderwys en Opleiding, Departement van		
618 Higher Education Act (101/1997), as amended :Appointment of an Administrator for the University of Fort Hare	4	42425	618 Higher Education Act (101/1997), as amended :Appointment of an Administrator for the University of Fort Hare	4	42425
635 Continuing Education and Training Act (16/2006), as amended & Higher Education Act (101/1997), as amended :Call for comments on the Draft Policy Framework to address Gender-based Violence in the Post-school Education and Training System	4	42437	635 Continuing Education and Training Act (16/2006), as amended & Higher Education Act (101/1997), as amended :Call for comments on the Draft Policy Framework to address Gender-based Violence in the Post-school Education and Training System	4	42437
Independent Communications Authority of Sout	h Africa		Onafhanklike Kommunikasie-owerheid van Suid-	Afrika	
604 Electronic Communications Act (36/2005) ('the ECA") :Draft Consumer Advisory Panel Amendment Regulations, 2019	32	42417	604 Electronic Communications Act (36/2005) ('the ECA") :Draft Consumer Advisory Panel Amendment Regulations, 2019	32	42417
Justice and Constitutional Development, Depart	ment of		Justisie en Staatkundige Ontwikkeling, Departen	nent va	ın
605 Child Justice Act (75/2008) :Increasing the area of jurisdiction of Nerina One-stop Child Justice Centre: Amendment of Notice No. 1022 of 12 December 2014	35	42417	605 Child Justice Act (75/2008) :Increasing the area of jurisdiction of Nerina One-stop Child Justice Centre: Amendment of Notice No. 1022 of 12 December 2014	35	42417
615 Superior Courts Act (10/2013) :Determination of Areas under the Jurisdiction of the Mpumalanga Division of the High Court of South Africa	4	42420	615 Superior Courts Act (10/2013) :Determination of Areas under the Jurisdiction of the Mpumalanga Division of the High Court of South Africa	4	42420
616 Use of Official Languages Act (12/2012) :Language Policy of the Department of Justice and Constitutional Development	4	42422	616 Use of Official Languages Act (12/2012) :Language Policy of the Department of Justice and Constitutional Development	4	42422
R.617 Promotion of National Unity and Reconciliation Act (34/1995) :Publication of increased amounts in terms of regulation 9(2)(a) of the regulations relating to assistance to victims in respect of Higher Education and Training	4	42423	R.617 Wet op die Bevordering van Nasionale Eenheid en Versoening (34/1995) :Pub- likasie van verhoogde bedrae ingevolge regulasie 9(2)(a) van die regulasies betr- effende bystand aan slagoffers ten opsigte van Hoër Onderwys en Opleiding	6	42423
Labour, Department of			Arbeid, Departement van		
R.612 Labour Relations Act, 1995 :Registration of a trade union: Universal Transport and Allied Workers Union (UTAWU)	11	42418	R.612 Labour Relations Act, 1995 :Registration of a trade union: Universal Transport and Allied Workers Union (UTAWU)	11	42418
R.613 Labour Relations Act, 1995 :Bargaining Council for the Furniture Manufacturing Industry of the South Western Districts: Extension to Non-parties of the Main Collective Amending Agreement	12	42418	R.613 Labour Relations Act, 1995 :Bargaining Council for the Furniture Manufacturing Industry of the South Western Districts: Extension to Non-parties of the Main Collective Amending Agreement	12	42418
R.614 Labour Relations Act, 1995 :National Bargaining Council for the Wood and Paper Sector: Renewal of period of operation of the conditions of service for the Pulp and Paper Sector Collective Agreement	26	42418	R.614 Labour Relations Act, 1995 :National Bargaining Council for the Wood and Paper Sector: Renewal of period of operation of the conditions of service for the Pulp and Paper Sector Collective Agreement	26	42418
Rural Development and Land Reform, Departme	nt of		Landelike Ontwikkeling en Grondhervorming, De van	parten	nent
606 Restitution of Land Rights Act (22/1994) as amended :Ringkink 229 IS	37	42417	606 Restitution of Land Rights Act (22/1994) as amended :Ringkink 229 IS	37	42417
607 Restitution of Land Rights Act (22/1994) as amended :Sekhukhune (Makhuduthamaga, Elias Motswaledi, Fetakgomo Tubatse and Thaba Tshweu): Various properties	39	42417	607 Restitution of Land Rights Act (22/1994) as amended :Sekhukhune (Makhuduthamaga, Elias Motswaledi, Fetakgomo Tubatse and Thaba Tshweu): Various properties	39	42417

No.	Page (Gazette No.	No.	Page No.	Gazette No.
608 Restitution of Land Rights Act (22/1994) as amended :Amendment of Gazette Notice No. 1019 of 2017 as contained in the Government Gazette Number 41132 in respect of Seabela Family Land Claim	42	42417	608 Restitution of Land Rights Act (22/1994) as amended :Amendment of Gazette Notice No. 1019 of 2017 as contained in the Government Gazette Number 41132 in respect of Seabela Family Land Claim	42	42417
609 Restitution of the Land Rights Act (22/1994) :Ringkink 229 IS	43	42417	609 Restitution of the Land Rights Act (22/1994) :Ringkink 229 IS	43	42417
610 Land Survey Act (8/1997) :Scale of fees to be charged in the Offices of the Chief Surveyor-General and the Surveyors-General for products and services provided	45	42417	610 Land Survey Act (8/1997) :Scale of fees to be charged in the Offices of the Chief Surveyor-General and the Surveyors-General for products and services provided	45	42417
611 Restitution of Land Rights Act (22/1994) :Koedoeshoek 301 JT: The Remaining extent of Portion 9	58	42417	611 Restitution of Land Rights Act (22/1994) :Koedoeshoek 301 JT: The Remaining extent of Portion 9	58	42417
GENERAL NOTICE			ALGEMENE KENNISGEWINGS		
Economic Development Department			Ekonomiese Ontwikkeling Departement		
239 International Trade Administration Commission :Customs Tariff Applications: List 03/2019	60	42417	239 International Trade Administration Commission :Customs Tariff Applications: List 03/2019	60	42417
240 International Trade Administration Commission of South Africa :Sunset review of the anti-dumping duties on disodium carbonate	62	42417	240 International Trade Administration Commission of South Africa :Sunset review of the anti-dumping duties on disodium carbonate	62	42417
257 International Trade Administration Act (71/2002) :Extension of the Policy Directive on the Exportation of Ferrous and Non-Ferrous Waste and Scrap Metal	4	42436	257 International Trade Administration Act (71/2002) :Extension of the Policy Directive on the Exportation of Ferrous and Non-Ferrous Waste and Scrap Metal	4	42436
Electoral Commission			Verkiesingskommissie		
246 Local Government: Municipal Electoral Act (27/2000) :Municipal By-elections – 15 May 2019: Official list of voting stations	4	42421	246 Local Government: Municipal Electoral Act (27/2000) :Municipal By-elections – 15 May 2019: Official list of voting stations	4	42421
Justice and Constitutional Development, Depart	ment of	1	Justisie en Staatkundige Ontwikkeling, Departer	ment va	an
241 Promotion of Access to Information Act, 2000 :Voluntary disclosure and automatic availability of records	70	42417	241 Promotion of Access to Information Act, 2000 :Voluntary disclosure and automatic availability of records	74	42417
242 Promotion of Access to Information Act (2/2000) :Description submitted in terms of section 15 (1): Limpopo Provincial Government: Department of Education	80	42417	242 Promotion of Access to Information Act (2/2000) :Description submitted in terms of section 15 (1): Limpopo Provincial Government: Department of Education	80	42417
247 The Promotion of National Unity and Reconciliation Act, 1995 : Amendments to the Regulations Relating to Assistance to Victims in Respect of Basic Education	4	42424	247 The Promotion of National Unity and Reconciliation Act, 1995 : Amendments to the Regulations Relating to Assistance to Victims in Respect of Basic Education	4	42424
National Treasury			Nasionale Tesourie		
248 Public Finance Management Act, 1999 :Statement of the National Revenue, Expenditure and Borrowings as at 31 March 2019 issued by the DG NT	11	42428	248 Public Finance Management Act, 1999 :Statement of the National Revenue, Expenditure and Borrowings as at 31 March 2019 issued by the DG NT	11	42428
South African Reserve Bank			Suid-Afrikaanse Reserwebank		
243 Currency and Exchanges Act (9/1933), as amended :Notice and Order of Forfeiture: Primo Expors Close Corporation, t/a Primo Import and Export Finance	84	42417	243 Currency and Exchanges Act (9/1933), as amended :Notice and Order of Forfeiture: Primo Expors Close Corporation, t/a Primo Import and Export Finance	84	42417
258 Currency and Exchanges Act (9/1933), as amended :Notice and Order of Forfeiture: Manziclox Close Corporation	4	42438	258 Currency and Exchanges Act (9/1933), as amended :Notice and Order of Forfeiture: Manziclox Close Corporation	4	42438

No.	Page (Gazette No.	No.	Page No.	Gazette No.
259 Currency and Exchanges Act (9/1933), as amended :Notice and Order of Forfeiture: Greenville Trading 500 Close Corporation (Registration number 2005/062181/23)	5	42438	259 Currency and Exchanges Act (9/1933), as amended :Notice and Order of Forfeiture: Greenville Trading 500 Close Corporation (Registration number 2005/062181/23)	5	42438
Trade and Industry, Department of			Handel en Nywerheid, Departement van		
244 Broad-Based Black Economic Empower- ment Act (53/2003) :Codes of Good Prac- tice on Act	85	42417	244 Broad-Based Black Economic Empower- ment Act (53/2003) :Codes of Good Prac- tice on Act	85	42417
Transport, Department of			Vervoer, Departement van		
245 International Air Service Act (60/1993) :Grant/Amendment of International Air Service License	214	42417	245 International Air Service Act (60/1993) :Grant/Amendment of International Air Service License	214	42417
BOARD NOTICE			RAADSKENNISGEWINGS		
71 Padongelukfondswet (56/1996) :Aanpassing van Statutêre Limiet ten opsigte van Eise vir Verlies aan Inkomste en Onderhoud	215	42417	71 Road Accident Fund Act (56/1996) :Ad- justment of Statutory Limit in respect of claims for Loss of Income and Loss of Support	215	42417
72 Agricultural Produce Agents Act (12/1992) :Unclaimed Monies payable to Principals of Fresh Produce Agents	216	42417	72 Agricultural Produce Agents Act (12/1992) :Unclaimed Monies payable to Principals of Fresh Produce Agents	216	42417

IMPORTANT NOTICE:

THE GOVERNMENT PRINTING WORKS WILL NOT BE HELD RESPONSIBLE FOR ANY ERRORS THAT MIGHT OCCUR DUE TO THE SUBMISSION OF INCOMPLETE / INCORRECT / ILLEGIBLE COPY.

No future queries will be handled in connection with the above.

Contents

No.		Gazette No.	Page No.
	Government Notices • Goewermentskennisgewings		
Agriculture,	Forestry and Fisheries, Department of/ Landbou, Bosbou en Visserye, Departement van		
646	Marketing of Agricultural Products Act (47/1996), as amended: Request for the continuation of statutory measures relating to levies, registrations and records & returns in the Port Industry, in terms of the Act	42451	16
Environmer	ntal Affairs, Department of/ Omgewingsake, Departement van		
647	National Environmental Management Act (107/1998): Consultation on Minimum Standards for the Consideration of Environmental Aspects in the Preparation and Review of Municipal Spatial Development Frameworks (SDFs) ir terms of section 23A and Section 24 (3) of the Act	n 42451	18
648	National Environmental Management Act (107/1998): Procedures to be followed for the assessment and minimum criteria for reporting of Identified Environmental Themes in terms of section 24(5)(a) and (h) of the National Environmental Act, 1998, when applying for Environmental Authorisation	1 42451	44
Independen	t Communications Authority of South Africa/ Onafhanklike Kommunikasie-owerheid van Suid-Afrika		
649	Electronic Communications Act (36/2005): Applications for transfer of an Individual Electronic Communications Service and Individual Electronic Communications Network Service Licences from Soft Touch Computing CC to Grow Makhosikati Trading CC	42451	76
650	Electronic Communications Act (36/2005): Applications for transfer of an individual Electronic Communications Service and Individual Electronic Communications Network Service Licences from Conekt Business Group (Pty) Ltd to Kgatontle Satellite Operations (Pty) Ltd	42451	79
Mineral Res	ources, Department of/ Minerale Bronne, Departement van		
651	Mine Health and Safety Act (29/1996): Guidance Note on Medico-Legal Investigations of Mine Deaths	42451	82
Rural Devel	opment and Land Reform, Department of/ Landelike Ontwikkeling en Grondhervorming, Departement	van	
652	Restitution of Land Rights Act (22/1994): Farm Eersterevier 621, Kareedouw, Koukama Local Municipality, Sarah Baartman District Municipality in the Eastern Cape Province	42451	109
	ndustry, Department of/ Handel en Nywerheid, Departement van		
653	Special Economic Zones Act (16/2014): Gazette notice for the intention to designate the Bojanala Special Economic Zone for 30 days public comments	42451	110
654	Special Zones Act (16/2014): Amendment to the ORTIA SEZ land area and the incorporation of the Impala to the designated area for the 30 days public comments	42451	114
Water and S	Sanitation, Department of/ Water en Sanitasie, Departement van		
655	National Water Act (36/1998): Proposed classes of water resource and resource quality objectives for the Berg Catchment	42451	121
	General Notices • Algemene Kennisgewings		
Agriculture,	Forestry and Fisheries, Department of/ Landbou, Bosbou en Visserye, Departement van		
263	Plant Improvement Act (53/1976): Regulations relating to establishments, varieties, plants and propagating material: Amendment	42451	173
263	Plantverbeteringswet (53/1976): Regulasies betreffende ondernemings, variëte, plante en voortplantingsmateriaal Wysiging	l: 42451	174
Economic D	Development Department/ Ekonomiese Ontwikkeling Departement		
264	Competition Act (89/1998): Notification of complaint referral: 04 Complaint Referral	42451	180
265	Competition Act (89/1998): Notification of decision to approve merger: 06 Large Mergers	42451	180
	an Reserve Bank/ Suid-Afrikaanse Reserwebank		
266	Exchange Control Regulations: Replacement of Notice No. 107 of 2019 publishd on 1 March 2019	42451	181
	Board Notices • Raadskennisgewings		
74	Financial Markets Act, 2012: Amendments to the ZAR X (Pty) Ltd Listings Requirements	42451	181

Pharmacy Act (53/1974): The South African Pharmacy Council: Rules relating to Good Pharmacy Practice.........

42451

182

Closing times for ORDINARY WEEKLY GOVERNMENT GAZETTE

The closing time is **15:00** sharp on the following days:

- > 27 December 2018, Thursday for the issue of Friday 04 January 2019
- > 04 January, Friday for the issue of Friday 11 January 2019
- 11 January, Friday for the issue of Friday 18 January 2019
- ➤ 18 January, Friday for the issue of Friday 25 January 2019
- 25 January, Friday for the issue of Friday 01 February 2019
- 01 February, Friday for the issue of Friday 08 February 2019
- 08 February, Friday for the issue of Friday 15 February 2019
- ➤ 15 February, Friday for the issue of Friday 22 February 2019
- > 22 February, Friday for the issue of Friday 01 March 2019
- ➤ 01 March, Friday for the issue of Friday 08 March 2019
- ➤ 08 March, Friday for the issue of Friday 15 March 2019
- ➤ 14 March, Thursday for the issue of Friday 22 March 2019
- > 22 March, Friday for the issue of Friday 29 March 2019
- > 29 March, Friday for the issue of Friday 05 April 2019
- > 05 April, Friday for the issue of Friday 12 April 2019
- > 11 April, Thursday for the issue of Thursday 18 April 2019
- ➤ 17 April, Wednesday for the issue of Friday 26 April 2019
- 25 April, Thursday for the issue of Friday 03 May 2019
- > 03 May, Friday for the issue of Friday 10 May 2019
- > 10 May, Friday for the issue of Friday 17 May 2019
- > 17 May, Friday for the issue of Friday 24 May 2019
- > 24 May, Friday for the issue of Friday 31 May 2019
- > 31 May, Friday for the issue of Friday 07 June 2019
- ➤ 07 June, Friday for the issue of Friday 14 June 2019
- ➤ 13 June, Thursday for the issue of Friday 21 June 2019
- 21 June, Friday for the issue of Friday 28 June 2019
 28 June, Friday for the issue of Friday 05 July 2019
- > 05 July, Friday for the issue of Friday 12 July 2019
- ➤ 12 July, Friday for the issue of Friday 19 July 2019
- ➤ 19 July, Friday for the issue of Friday 26 July 2019
- ➤ 26 July, Friday for the issue of Friday 02 August 2019
- > 01 August, Thursday for the issue of Friday 08 August 2019
- ➤ 08 August, Thursday for the issue of Friday 16 August 2019
- ➤ 16 August, Friday for the issue of Friday 23 August 2019
- > 23 August, Friday for the issue of Friday 30 August 2019
- > 30 August, Friday for the issue of Friday 06 September 2019
- ➤ 06 September, Friday for the issue of Friday 13 September 2019
- ➤ 13 September, Friday for the issue of Friday 20 September 2019
- ➤ 19 September, Thursday for the issue of Friday 27 September 2019
- > 27 September, Friday for the issue of Friday 04 October 2019
- ➤ 04 October, Friday for the issue of Friday 11 October 2019
- ➤ 11 October, Friday for the issue of Friday 18 October 2019
- ➤ 18 October, Friday for the issue of Friday 25 October 2019
- ➤ 25 October, Friday for the issue of Friday 01 November 2019
- ➤ 01 November, Friday for the issue of Friday 08 November 2019
- ➤ 08 November, Friday for the issue of Friday 15 November 2019
- ➤ 15 November, Friday for the issue of Friday 22 November 2019
- ➤ 22 November, Friday for the issue of Friday 29 November 2019
- 29 November, Friday for the issue of Friday 06 December 2019
- 06 December, Friday for the issue of Friday 13 December 2019
 12 December, Thursday for the issue of Friday 20 December 2019
- ➤ 18 December, Wednesday for the issue of Friday 27 December 2019

LIST OF TARIFF RATES

FOR PUBLICATION OF NOTICES

COMMENCEMENT: 1 APRIL 2018

NATIONAL AND PROVINCIAL

Notice sizes for National, Provincial & Tender gazettes 1/4, 2/4, 3/4, 4/4 per page. Notices submitted will be charged at R1008.80 per full page, pro-rated based on the above categories.

Pricing for National, Provincial - Variable Priced Notices				
Notice Type	New Price (R)			
Ordinary National, Provincial	1/4 - Quarter Page	252.20		
Ordinary National, Provincial	2/4 - Half Page	504.40		
Ordinary National, Provincial	3/4 - Three Quarter Page	756.60		
Ordinary National, Provincial	4/4 - Full Page	1008.80		

EXTRA-ORDINARY

All Extra-ordinary National and Provincial gazette notices are non-standard notices and attract a variable price based on the number of pages submitted.

The pricing structure for National and Provincial notices which are submitted as **Extra ordinary submissions** will be charged at R3026.32 per page.

The **Government Printing Works** (**GPW**) has established rules for submitting notices in line with its electronic notice processing system, which requires the use of electronic *Adobe* Forms. Please ensure that you adhere to these guidelines when completing and submitting your notice submission.

CLOSING TIMES FOR ACCEPTANCE OF NOTICES

- The Government Gazette and Government Tender Bulletin are weekly publications that are published on Fridays and the closing time for the acceptance of notices is strictly applied according to the scheduled time for each gazette.
- 2. Please refer to the Submission Notice Deadline schedule in the table below. This schedule is also published online on the Government Printing works website www.gpwonline.co.za

All re-submissions will be subject to the standard cut-off times.

All notices received after the closing time will be rejected.

	Dublication			
Government Gazette Type	Publication Frequency	Publication Date	Submission Deadline	Cancellations Deadline
National Gazette	Weekly	Friday	Friday 15h00 for next Friday	Tuesday, 15h00 - 3 working days prior to publication
Regulation Gazette	Weekly	Friday	Friday 15h00 for next Friday	Tuesday, 15h00 - 3 working days prior to publication
Petrol Price Gazette	Monthly	Tuesday before 1st Wednesday of the month	One day before publication	1 working day prior to publication
Road Carrier Permits	Weekly	Friday	Thursday 15h00 for next Friday	3 working days prior to publication
Unclaimed Monies (Justice, Labour or Lawyers)	January / September 2 per year	Last Friday	One week before publication	3 working days prior to publication
Parliament (Acts, White Paper, Green Paper)	As required	Any day of the week	None	3 working days prior to publication
Manuals	Bi- Monthly	2nd and last Thursday of the month	One week before publication	3 working days prior to publication
State of Budget (National Treasury)	Monthly	30th or last Friday of the month	One week before publication	3 working days prior to publication
Extraordinary Gazettes	As required	Any day of the week	Before 10h00 on publication date	Before 10h00 on publication date
Legal Gazettes A, B and C	Weekly	Friday	One week before publication	Tuesday, 15h00 - 3 working days prior to publication
Tender Bulletin	Weekly	Friday	Friday 15h00 for next Friday	Tuesday, 15h00 - 3 working days prior to publication
Gauteng	Weekly	Wednesday	Two weeks before publication	3 days after submission deadline
Eastern Cape	Weekly	Monday	One week before publication	3 working days prior to publication
Northern Cape	Weekly	Monday	One week before publication	3 working days prior to publication
North West	Weekly	Tuesday	One week before publication	3 working days prior to publication
KwaZulu-Natal	Weekly	Thursday	One week before publication	3 working days prior to publication
Limpopo	Weekly	Friday	One week before publication	3 working days prior to publication
Mpumalanga	Weekly	Friday	One week before publication	3 working days prior to publication

Government Gazette Type	Publication Frequency	Publication Date	Submission Deadline	Cancellations Deadline
Gauteng Liquor License Gazette	Monthly	Wednesday before the First Friday of the month	Two weeks before publication	3 working days after submission deadline
Northern Cape Liquor License Gazette	Monthly	First Friday of the month	Two weeks before publication	3 working days after submission deadline
National Liquor License Gazette	Monthly	First Friday of the month	Two weeks before publication	3 working days after submission deadline
Mpumalanga Liquor License Gazette	Bi-Monthly	Second & Fourth Friday	One week before publication	3 working days prior to publication

EXTRAORDINARY GAZETTES

3. Extraordinary Gazettes can have only one publication date. If multiple publications of an Extraordinary Gazette are required, a separate Z95/Z95Prov Adobe Forms for each publication date must be submitted.

Notice Submission Process

- 4. Download the latest *Adobe* form, for the relevant notice to be placed, from the **Government Printing Works** website <u>www.qpwonline.co.za</u>.
- 5. The Adobe form needs to be completed electronically using Adobe Acrobat / Acrobat Reader. Only electronically completed Adobe forms will be accepted. No printed, handwritten and/or scanned Adobe forms will be accepted.
- 6. The completed electronic *Adobe* form has to be submitted via email to submit.egazette@gpw.gov.za. The form needs to be submitted in its original electronic *Adobe* format to enable the system to extract the completed information from the form for placement in the publication.
- Every notice submitted must be accompanied by an official GPW quotation. This must be obtained from the eGazette Contact Centre.
- 8. Each notice submission should be sent as a single email. The email **must** contain **all documentation** relating to a particular notice submission.
 - 8.1. Each of the following documents must be attached to the email as a separate attachment:
 - 8.1.1. An electronically completed *Adobe* form, specific to the type of notice that is to be placed.
 - 8.1.1.1. For National *Government Gazette* or *Provincial Gazette* notices, the notices must be accompanied by an electronic Z95 or Z95Prov *Adobe* form
 - 8.1.1.2. The notice content (body copy) **MUST** be a separate attachment.
 - 8.1.2. A copy of the official **Government Printing Works** quotation you received for your notice. (Please see Quotation section below for further details)
 - 8.1.3. A valid and legible Proof of Payment / Purchase Order: **Government Printing Works** account customer must include a copy of their Purchase Order. **Non-Government Printing Works** account customer needs to submit the proof of payment for the notice
 - 8.1.4. Where separate notice content is applicable (Z95, Z95 Prov and TForm 3, it should **also** be attached as a separate attachment. (*Please see the Copy Section below, for the specifications*).
 - 8.1.5. Any additional notice information if applicable.

- 9. The electronic *Adobe* form will be taken as the primary source for the notice information to be published. Instructions that are on the email body or covering letter that contradicts the notice form content will not be considered. The information submitted on the electronic *Adobe* form will be published as-is.
- To avoid duplicated publication of the same notice and double billing, Please submit your notice ONLY ONCE.
- 11. Notices brought to **GPW** by "walk-in" customers on electronic media can only be submitted in *Adobe* electronic form format. All "walk-in" customers with notices that are not on electronic *Adobe* forms will be routed to the Contact Centre where they will be assisted to complete the forms in the required format.
- 12. Should a customer submit a bulk submission of hard copy notices delivered by a messenger on behalf of any organisation e.g. newspaper publisher, the messenger will be referred back to the sender as the submission does not adhere to the submission rules.

QUOTATIONS

- 13. Quotations are valid until the next tariff change.
 - 13.1. Take note: GPW's annual tariff increase takes place on 1 April therefore any quotations issued, accepted and submitted for publication up to 31 March will keep the old tariff. For notices to be published from 1 April, a quotation must be obtained from GPW with the new tariffs. Where a tariff increase is implemented during the year, GPW endeavours to provide customers with 30 days' notice of such changes.
- 14. Each quotation has a unique number.
- 15. Form Content notices must be emailed to the *eGazette* Contact Centre for a quotation.
 - 15.1. The *Adobe* form supplied is uploaded by the Contact Centre Agent and the system automatically calculates the cost of your notice based on the layout/format of the content supplied.
 - 15.2. It is critical that these *Adobe* Forms are completed correctly and adhere to the guidelines as stipulated by **GPW**.

16. APPLICABLE ONLY TO GPW ACCOUNT HOLDERS:

- 16.1. GPW Account Customers must provide a valid GPW account number to obtain a quotation.
- 16.2. Accounts for GPW account customers must be active with sufficient credit to transact with GPW to submit notices.
 - 16.2.1. If you are unsure about or need to resolve the status of your account, please contact the GPW Finance Department prior to submitting your notices. (If the account status is not resolved prior to submission of your notice, the notice will be failed during the process).

17. APPLICABLE ONLY TO CASH CUSTOMERS:

- 17.1. Cash customers doing **bulk payments** must use a **single email address** in order to use the **same proof of payment** for submitting multiple notices.
- 18. The responsibility lies with you, the customer, to ensure that the payment made for your notice(s) to be published is sufficient to cover the cost of the notice(s).
- 19. Each quotation will be associated with one proof of payment / purchase order / cash receipt.
 - 19.1. This means that the quotation number can only be used once to make a payment.

COPY (SEPARATE NOTICE CONTENT DOCUMENT)

- 20. Where the copy is part of a separate attachment document for Z95, Z95Prov and TForm03
 - 20.1. Copy of notices must be supplied in a separate document and may not constitute part of any covering letter, purchase order, proof of payment or other attached documents.

The content document should contain only one notice. (You may include the different translations of the same notice in the same document).

20.2. The notice should be set on an A4 page, with margins and fonts set as follows:

Page size = A4 Portrait with page margins: Top = 40mm, LH/RH = 16mm, Bottom = 40mm; Use font size: Arial or Helvetica 10pt with 11pt line spacing;

Page size = A4 Landscape with page margins: Top = 16mm, LH/RH = 40mm, Bottom = 16mm; Use font size: Arial or Helvetica 10pt with 11pt line spacing;

CANCELLATIONS

- 21. Cancellation of notice submissions are accepted by GPW according to the deadlines stated in the table above in point 2. Non-compliance to these deadlines will result in your request being failed. Please pay special attention to the different deadlines for each gazette. Please note that any notices cancelled after the cancellation deadline will be published and charged at full cost.
- 22. Requests for cancellation must be sent by the original sender of the notice and must accompanied by the relevant notice reference number (N-) in the email body.

AMENDMENTS TO NOTICES

23. With effect from 01 October 2015, **GPW** will not longer accept amendments to notices. The cancellation process will need to be followed according to the deadline and a new notice submitted thereafter for the next available publication date.

REJECTIONS

- 24. All notices not meeting the submission rules will be rejected to the customer to be corrected and resubmitted. Assistance will be available through the Contact Centre should help be required when completing the forms. (012-748 6200 or email info.egazette@gpw.gov.za). Reasons for rejections include the following:
 - 24.1. Incorrectly completed forms and notices submitted in the wrong format, will be rejected.
 - 24.2. Any notice submissions not on the correct Adobe electronic form, will be rejected.
 - 24.3. Any notice submissions not accompanied by the proof of payment / purchase order will be rejected and the notice will not be processed.
 - 24.4. Any submissions or re-submissions that miss the submission cut-off times will be rejected to the customer. The Notice needs to be re-submitted with a new publication date.

APPROVAL OF NOTICES

- 25. Any notices other than legal notices are subject to the approval of the Government Printer, who may refuse acceptance or further publication of any notice.
- 26. No amendments will be accepted in respect to separate notice content that was sent with a Z95 or Z95Prov notice submissions. The copy of notice in layout format (previously known as proof-out) is only provided where requested, for Advertiser to see the notice in final Gazette layout. Should they find that the information submitted was incorrect, they should request for a notice cancellation and resubmit the corrected notice, subject to standard submission deadlines. The cancellation is also subject to the stages in the publishing process, i.e. If cancellation is received when production (printing process) has commenced, then the notice cannot be cancelled.

GOVERNMENT PRINTER INDEMNIFIED AGAINST LIABILITY

- The Government Printer will assume no liability in respect of—
 - 27.1. any delay in the publication of a notice or publication of such notice on any date other than that stipulated by the advertiser;
 - 27.2. erroneous classification of a notice, or the placement of such notice in any section or under any heading other than the section or heading stipulated by the advertiser;
 - 27.3. any editing, revision, omission, typographical errors or errors resulting from faint or indistinct copy.

LIABILITY OF ADVERTISER

28. Advertisers will be held liable for any compensation and costs arising from any action which may be instituted against the Government Printer in consequence of the publication of any notice.

CUSTOMER INQUIRIES

Many of our customers request immediate feedback/confirmation of notice placement in the gazette from our Contact Centre once they have submitted their notice – While **GPW** deems it one of their highest priorities and responsibilities to provide customers with this requested feedback and the best service at all times, we are only able to do so once we have started processing your notice submission.

GPW has a 2-working day turnaround time for processing notices received according to the business rules and deadline submissions.

Please keep this in mind when making inquiries about your notice submission at the Contact Centre.

- 29. Requests for information, quotations and inquiries must be sent to the Contact Centre ONLY.
- 30. Requests for Quotations (RFQs) should be received by the Contact Centre at least **2 working days** before the submission deadline for that specific publication.

PAYMENT OF COST

- 31. The Request for Quotation for placement of the notice should be sent to the Gazette Contact Centre as indicated above, prior to submission of notice for advertising.
- 32. Payment should then be made, or Purchase Order prepared based on the received quotation, prior to the submission of the notice for advertising as these documents i.e. proof of payment or Purchase order will be required as part of the notice submission, as indicated earlier.
- 33. Every proof of payment must have a valid **GPW** quotation number as a reference on the proof of payment document.
- 34. Where there is any doubt about the cost of publication of a notice, and in the case of copy, an enquiry, accompanied by the relevant copy, should be addressed to the Gazette Contact Centre, **Government Printing Works**, Private Bag X85, Pretoria, 0001 email: info.egazette@gpw.gov.za before publication.
- 35. Overpayment resulting from miscalculation on the part of the advertiser of the cost of publication of a notice will not be refunded, unless the advertiser furnishes adequate reasons why such miscalculation occurred. In the event of underpayments, the difference will be recovered from the advertiser, and future notice(s) will not be published until such time as the full cost of such publication has been duly paid in cash or electronic funds transfer into the **Government Printing Works** banking account.
- 36. In the event of a notice being cancelled, a refund will be made only if no cost regarding the placing of the notice has been incurred by the **Government Printing Works**.
- 37. The **Government Printing Works** reserves the right to levy an additional charge in cases where notices, the cost of which has been calculated in accordance with the List of Fixed Tariff Rates, are subsequently found to be excessively lengthy or to contain overmuch or complicated tabulation.

PROOF OF PUBLICATION

- 38. Copies of any of the *Government Gazette* or *Provincial Gazette* can be downloaded from the **Government Printing Works** website www.gpwonline.co.za free of charge, should a proof of publication be required.
- 39. Printed copies may be ordered from the Publications department at the ruling price. The **Government Printing Works** will assume no liability for any failure to post or for any delay in despatching of such *Government Gazette*(s)

GOVERNMENT PRINTING WORKS CONTACT INFORMATION

Physical Address:Postal Address:GPW Banking Details:Government Printing WorksPrivate Bag X85Bank: ABSA Bosman Street149 Bosman StreetPretoriaAccount No.: 405 7114 016Pretoria0001Branch Code: 632-005

For Gazette and Notice submissions: Gazette Submissions: E-mail: submit.egazette@gpw.gov.za
For queries and quotations, contact: Gazette Contact Centre: E-mail: info.egazette@gpw.gov.za

Tel: 012-748 6200

Contact person for subscribers: Mrs M. Toka: E-mail: subscriptions@gpw.gov.za

Tel: 012-748-6066 / 6060 / 6058

Fax: 012-323-9574

GOVERNMENT NOTICES • GOEWERMENTSKENNISGEWINGS

DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES

NO. 646 10 MAY 2019

NATIONAL AGRICULTURAL MARKETING COUNCIL MARKETING OF AGRICULTURAL PRODUCTS ACT, 1996, AS AMENDED (ACT No. 47 OF 1996)

REQUEST FOR THE CONTINUATION OF STATUTORY MEASURES RELATING TO LEVIES, REGISTRATIONS AND RECORDS & RETURNS IN THE PORK INDUSTRY, IN TERMS OF THE MARKETING OF AGRICULTURAL PRODUCTS ACT

It is hereby made known that, in terms of section 11 of the Marketing of Agricultural Products Act, 1996 (Act No.47 of 1996) (MAP Act), the Minister of Agriculture, Forestry and Fisheries has received a request from the pork industry for the continuation of statutory measures relating to levies, registrations, the keeping of records and the rendering of returns. The applicant for the proposed statutory measures is the South African Pork Producers' Organisation (SAPPO), a voluntary organisation established by pork producers in 1992 to act as mouthpiece and representative organisation for pork producers in South Africa. The current statutory measures for the pork industry will expire on 31 October 2019. Although the current statutory measures will only lapse on 31 October 2019, SAPPO requested ministerial approval for the establishment of the proposed statutory measures for a new period of three years, from 1 November 2019 to expire on 31 October 2022.

The existing statutory levy is R11.58 per slaughter pig or live pig exported (excluding VAT). SAPPO proposed that the statutory levy increase to R12.16 per pig (VAT excluded) for the period 1 November 2019 to 31 October 2020, to R12.77 per pig (VAT excluded) for the period 1 November 2020 to 31 October 2021 and to R13.41 per pig (VAT excluded) for the period 1 November 2021 to 31 October 2022. The estimated income from the proposed levies is between R36.8 million (for 2019/20) and R43.4 million per annum (for 2021/22). The proposed statutory levies will finance the following functions, namely —

- Business development;
- Consumer assurance;
- > Consumer communication and education;
- Research and development;
- Business intelligence; and
- Corporate governance (Administration).

The MAP Act stipulates that a statutory levy may not exceed 5% of the price realised for a specific agricultural product at the first point of sale. The maximum of 5% must be based on a guideline price calculated as the average price at the first point of sale over a period not exceeding three years. The proposed statutory levies will only be 0.55% of the calculated guideline price for a pork carcass (an average over three years) at the first point of sale.

The purpose of the statutory measure relating to registrations is to compel abattoirs slaughtering pigs and exporters of live pigs, to register with the levy administrator (SAPPO). The purpose of the statutory measure relating to records & returns is to compel abattoirs and exporters of live pigs to render records and returns to the levy administrator. These statutory measures are necessary to ensure that continuous, timeous and accurate market information relating to pigs slaughtered, marketed and live pigs exported, is available to all role-players. Market information is deemed essential for all role-players in order for them to make informed decisions.

The National Agricultural Marketing Council (NAMC) took cognisance of the proposed continuation of the statutory measures relating to levies, registrations, the keeping of records and the rendering of returns in the pork industry as requested by SAPPO, is consistent with the objectives of the MAP Act. The request is currently being investigated by the NAMC and recommendations in this regard will be made to the Minister in the near future.

Directly affected groups in the pork industry are kindly requested to submit any comments, regarding the proposed statutory measures, to the NAMC on or before 24 May 2019, to enable the Council to finalise its recommendation to the Minister in this regard. Submissions should be in writing and be addressed to:

National Agricultural Marketing Council
Private Bag X 935
PRETORIA

0001

Enquiries: Dr Ndumiso Mazibuko

E-mail: ndumiso@namc.co.za

Tel.: (012) 341 1115

(073) 551 8388

Fax No.: (012) 341 1911

DEPARTMENT OF ENVIRONMENTAL AFFAIRS

NO. 647 10 MAY 2019

NATIONAL ENVIRONMENTAL MANAGEMENT ACT, 1998 (ACT NO. 107 OF 1998)

CONSULTATION ON MINIMUM STANDARDS FOR THE CONSIDERATION OF ENVIRONMENTAL ASPECTS IN THE PREPARATION AND REVIEW OF MUNICIPAL SPATIAL DEVELOPMENT FRAMEWORKS (SDFs) IN TERMS OF SECTION 23A AND SECTION 24(3) OF THE NATIONAL ENVIRONMENTAL MANAGEMENT ACT, 1998

I, Nomvula Paula Mokonyane, Minister of Environmental Affairs, hereby, in terms of section 23A and section 24(3) of the National Environmental Management Act, 1998, publish for public comment, the Minimum Standards for the Consideration of Environmental Aspects in the Preparation and Review of Spatial Development Frameworks (SDF), as contained in the Schedule hereto. The Standards aim to provide guidance regarding the identification and integration of environmental aspects within spatial development planning.

Members of the public are invited to submit to the Minister, within 45 days from the date of the publication of this Notice in the *Gazette*, written comments or inputs to the following addresses:

By post to: The Director-General:

Department of Environmental Affairs

Attention: Ms D Fischer Private Bag X447 PRETORIA

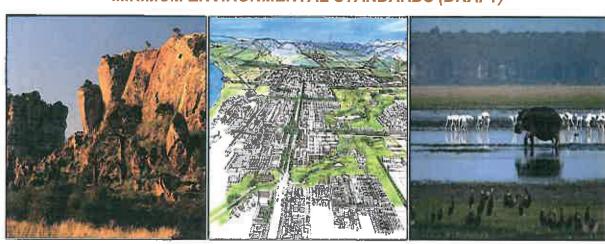
0001

By hand at: Reception, Environment House, 473 Steve Biko Road, Arcadia, Pretoria, 0083

By e-mail: <u>DFischer@environment.gov.za</u>

Any inquiries in connection with the Notice can be directed to Mr Simon Moganetsi at Tel: 012 399 9308.

Comments received after the closing date may not be considered.


NOMVULA PAULA MOKONYANE MINISTER OF ENVIRONMENTAL AFFAIRS

SCHEDULE

MINIMUM STANDARDS FOR THE CONSIDERATION OF ENVIRONMENTAL ASPECTS IN THE PREPARATION/REVIEW OF MUNICIPAL SPATIAL DEVELOPMENT FRAMEWORKS (MUNICIPAL SDFs)

MINIMUM ENVIRONMENTAL STANDARDS (DRAFT)

JANUARY 2019

TABLE OF CONTENTS

SECT	TON A: CONTEXT (PURPOSE OF THE MINIMUM ENVIRONMENTAL STANDARDS)	5
1 (CONTEXT: PURPOSE OF THE MINIMUM ENVIRONMENTAL STANDARDS	5
SECTI	TON B: STEPS IN IMPLEMENTING THE STANDARDS IN PREPARATION/REVIEW OF SDFS	8
2 9	STEPS IN IMPLEMENTING THE STANDARDS	8
2.1	1 STEP 1: UNDERSTANDING THE ENVIRONMENTAL STATUS QUO	8
2.1	1.1 LIST ALL ENVIRONMENTAL CRITERIA (FEATURES/LAND USES) IN THE MUNICIPAL AREA	8
2.1	1.2 GIVE A BRIEF DESCRIPTION OF EACH CRITERION/FEATURE	
2.1	1.3 DETERMINE IF THERE IS SPATIAL DATA FOR EACH CRITERION IDENTIFIED	9
2.1	1.4 Specific Links for Spatial Data on each Environmental Criterion	9
2.1	1.5 UNMAPPED CRITERIA: ADVICE ON WHAT AND HOW THEY MUST BE MAPPED	11
2.1	1.6 ENSURE THAT CRITERIA/FEATURES INCLUDE BUFFERS WHERE APPROPRIATE	13
2.2	2 STEP 2: OVERLAYING THE SPATIAL DATASETS	14
2.3	3 STEP 3: IDENTIFY COMPATIBLE/INCOMPATIBLE LAND USES OR ACTIVITIES	15
2.4	,,,	
2.5	5 STEP 5: RESOLUTION OF LAND USE CONFLICTS	18
SECTI	ION C: GUIDELINES (BEST PRACTICE)	21
3 (GUIDELINES (BEST PRACTICE)	21
3.1	1 GUIDLINE1: VALUATION OF ECOLOGICAL ASSETS	21
3.2		
Ac	TIVITIES	
3.3	GUIDLINE3: APPLICATION OF MINIMUM STANDARDS WITHIN THE FRAMEWORK OF A LAND USE SCH	ЕМЕ23
SECTI	ION D: ANNEXURES	25
4 4	ANNEXURES	25
LIS	T OF TABLES	
		•
	e 1: Criteria to be included in the Minimum Standard	
Table	e 2: Specific Links Where Data Can Be Found	9
Table	e 3: Unmapped Criteria: Advice on what and how they must be mapped	11
Table	e 4: Overlaying the Spatial Datasets	14
Table	e 5: Matrix showing compatible and incompatible land uses	16
Table	e 6: Standard Descriptions of Features/Sub-criteria	25
LIS'	T OF FIGURES	
	re 1: Objectives, Targets and Indicators	17

MINIMUM ENVIRONMENTAL STANDARDS

Draft Document (DEA, SANBI, DRDLR)

ABBREVIATIONS & ACRONYMS

CBAs Critical Biodiversity Areas

DEA Department of Environmental Affairs

DRDLR Department of Rural Development and Land Reforms

EA Environmental Authorisation

EIA Environmental Impact Assessment

EMF Environmental Management Framework

ESAs Ecological Support Areas

GPEMF Gauteng Provincial Environmental Management Framework

GIS Geographical Information Systems

GPS Global Position System

LUS Land Use Scheme

MEC Member of Executive Council

MSDF Municipal Spatial Development Framework

NEMA National Environmental Management Act, 1998 (Act No. 107 of 1998)

NDP National Development Plan

PAs Protected Areas

RSA Republic of South Africa

SANBI South African National Biodiversity Institute

SDF Spatial Development Framework

SEMAs Specific Environmental Management Acts

SPLUMA Spatial Planning and Land Use Management Act, 2013 (Act No. 16 of 2013)

SWSAs Strategic Water Source Areas

UNESCO United Nations Education, Scientific and Cultural Organisations

Section A: Context (Purpose of the Minimum Environmental Standards)

Context: Purpose of the Minimum Environmental Standards

Municipalities are obliged, in terms of the Spatial Planning and Land Use Management Act No. 16 of 2013 (SPLUMA) to incorporate environmental aspects into their spatial development frameworks (SDFs). The Minimum Environmental Standards contained in this document (the "Standards") give guidance to Municipalities to fulfil that duty. The purpose of the Standards is to proactively integrate environmental management aspects into the development/review of SPLUMA compliant Municipal Spatial Development Frameworks (MSDFs) to ensure that environmental and developmental planning achieve mutually reinforcing outcomes, in terms of sustainability. The Standards provide a conduit through which pertinent environmental considerations/concerns can be streamlined into spatial planning, specifically at local Municipality level. Ultimately, these Standards are designed to regulate the effect of development activities upon the environment, and equally important, to simplify approval/authorisation processes for Municipalities¹. These Standards were developed taking into consideration, inter alia, relevant provisions of the Constitution of the Republic of South Africa, 1996 (the Constitution), SPLUMA, NEMA, specific environmental management acts (SEMAs) and relevant policy instruments such as the National Development Plan (NDP). The most pertinent provisions of SPLUMA and NEMA for the purposes of these Standards are the following:

In terms of SPLUMA:

- o Section 12(1)(m) provides that the national and provincial spheres of government and each municipality must prepare SDFs that take cognisance of any environmental management instrument adopted by the relevant environmental management authority;
- o Section 21(j) provides that a municipal SDF must include a strategic assessment of the environmental pressures and opportunities within the Municipal area (including the spatial location of environmental sensitivities. high potential agricultural land and coastal access strips, where applicable);
- o Section 24(1)(b) states that a land use scheme must take cognisance of any environmental management instrument adopted by the environmental management authority, and must comply with environmental legislation.

¹ If a Municipal SDF is compliant to the Minimum Environmental Standards – incorporates both environmental and planning aspects - it has the capability to integrate various Plans (e.g. Environment, Human Settlements, Infrastructure, Transportation Planning, Waste Management Plans, etc.) into one Municipal SDF. Sufficient environmental input into SDFs will then result in Municipalities only having to develop one Plan.

- In terms of NEMA, Section 24(2) in relevant parts, provides that the Minister of Environmental Affairs (Minister), or a Member of the Executive Council (MEC) with the concurrence of the Minister, may identify —
 - activities which may not commence without environmental authorisation from the competent authority;
 - geographical areas based on environmental attributes, and specified in spatial tools or environmental management instruments, adopted in the prescribed manner by the Minister or MEC, with the concurrence of the Minister, in which specified activities may be excluded from the requirement to obtain an environmental authorisation from the competent authority;
 - o activities contemplated in paragraphs (a) and (b) of section 24(2) that, based on an environmental management instrument adopted in the prescribed manner by the Minister or an MEC, with the concurrence of the Minister, may be excluded from the requirement to obtain an environmental authorisation from the competent authority.

The above illustrates that SPLUMA and NEMA provide a framework that can lead to congruence between environmental planning and spatial planning objectives. An SDF that meets the minimum environmental standards would not lead to automatic exclusions from the requirement to obtain an EA. If a Municipal SDF has been prepared in a manner that meets the minimum environmental standards that are acceptable to the Minister or the MEC responsible for environment, and is subjected to the prescribed public consultation processes, it may be considered as an environmental management instrument which can, in specific instances and on a case-by-case basis, be used for purposes of excluding some of the activities identified in terms of NEMA from the requirement to obtain an environmental authorisation (EA). Incorporating minimum environmental standards into SDFs will not automatically lead to such exclusions, but could form the basis for identifying specific activities that currently require an EA to be excluded from that requirement, if sufficient information (e.g. specific zones where the exclusions are applicable and the mitigation standards that must be met) is provided.

Section B - STEPS IN IMPLEMENTING THE STANDARDS -

Section B: Steps in implementing the Standards in preparation/review of SDFs

2 Steps in Implementing the Standards

2.1 Step 1: Understanding the Environmental Status Quo

The first vital step is for Municipalities to have a good understanding of their Environmental Status Quo. From Section 2.1.1 up to Section 2.1.6 the document provides a full elaboration of the requisite steps that a Municipality should follow in undertaking a comprehensive Status Quo Analysis on all relevant environmental criteria/features within a Municipal spatial jurisdiction.

2.1.1 List all Environmental Criteria (Features/Land Uses) in the Municipal Area

The Municipality must undertake an exercise of compiling a list of relevant Environmental Criteria existing within their spatial jurisdiction. This should be inclusive of both the key features (e.g. rivers, wetlands, forests) as well as land uses that have environmental impacts (e.g. agricultural resources, mining resources).

Table 1 provides a list of the proposed Environmental Criteria, derived through extensive literature review, robust discussions and stakeholder consultations. It represents a "menu" of the most significant environmental features that are likely to be found at a Municipal planning sphere. Municipalities should use this list as a guide (starting point) to identify (spatially locate), those criteria existing within their jurisdiction and consider them during the SDF preparation/review process. In addition to the **Environmental Criteria**, the Table also includes the **Sub-criteria** (main sub-categories, components and constituents of the key environmental features). **NB**: Municipalities may take the liberty to re-organise (aggregate/disaggregate) Environmental Criteria, as long as all the Criteria are considered. However, focus should be given to mapable (spatial) environmental criteria².

TABLE 1: CRITERIA TO BE INCLUDED IN THE MINIMUM STANDARD

Criteria (Features/Land Use) Sub-Criteria		
1. Environmental Resources		Protected Areas (PAs)
	Critical Biodiversity Areas (CBAs)	
		Ecological Support Areas (ESAs)
		Strategic Water Source Areas (SWSAs)
		Nature-based tourism or scenic features
2.	Environmental Hazards	Natural hazards (e.g. floodplains, Dongas & Erosion, Sink holes, Mass earth
		movements, Extreme weather prone areas, Steep slopes)
		Man-made hazards (e.g. waste landfill sites, industrial pollution sites)
3. Cultural and heritage resources		Cultural landscapes or features (e.g. Burial sites, Cultural World Heritage
		Sites (UNESCO), National heritage sites, Provincial Heritage Areas, Local

² Each SDF should also have a **land use/cover base map** depicting topographical features (i.e. mountains, rivers, etc.) as some of these features may not be captured in the criteria. **Nature-based Tourism or Scenic areas** can be quite spacious. Consequently, Municipalities will need to do a fine-scale mapping in order to include them into their SDFs. Alternatively, Municipalities can map their **tourism nodes**.

		Heritage Areas, Cultural landscapes, Archaeological & Paleontological sites)
4.	Agricultural resources	High potential agricultural land
5.	Mining	Mine tallings, current and past mining areas, acid-mine drainage affected
		features, areas contaminated/degraded by mining
6.	Infrastructure	Utilities Infrastructure (e.g. railways, roads, pipelines, waste water treatment facilities, renewable/non-renewable energy infrastructure)

2.1.2 Give a Brief Description of each Criterion/Feature

Having compiled the list, the Municipality should write-up brief descriptions of each Environmental Criterion (both the environmental features and land uses), identified in 2.1.1. Municipalities should/can draw from the pre-determined descriptions (see Table 6 in Annexures) and use it as a guide. Customisations should cover such aspects as the exact condition, location, spatial extent and significance of the environmental feature. Moreover, descriptions should be pegged at the sub-criteria level, to provide finer detail about the environmental features.

2.1.3 Determine if there is Spatial Data for each Criterion identified

The Municipality should then determine if there is *spatial data* for each criterion, as identified in 2.1.1. It is prudent that the Municipality makes use of existing and readily available data/information, to avoid wastage of resources and/or time in 'reinventing the wheel'. Some of the freely available GIS-based datasets are presented in Table 2. One of the outcomes of this part of the process is the identification of gaps (i.e. instances where there is no existing *spatial data* for identified Environmental Criteria). In terms of **Scale**, in contentious, high pressure areas, Municipalities should go down to a *Cadastral boundary level*, but in other parts (e.g. rural areas), a scale of 1:50 000 might be good enough.

2.1.4 Specific Links for Spatial Data on each Environmental Criterion

For the datasets that are available, Table 2 presents the specific links where the data can be accessed.

TABLE 2: SPECIFIC LINKS WHERE DATA CAN BE FOUND

Criteria (Features/Land Use)	Sub-Criteria	Specific links where data can be found
1. Environmental Resources	Protected Areas (PAs) Critical Biodiversity Areas (CBAs)	https://egis.environment.gov.za/ Gauteng http://bgis.sanbi.org/gauteng Limpopo http://bgis.sanbi.org/limpopo North West http://bgis.sanbi.org/Projects/Detail/179 Mpumalanga http://bgis.sanbi.org/MBSP KZN http://bgis.sanbi.org/Projects/Detail/22

MINIMUM ENVIRONMENTAL STANDARDS

Draft Document (DEA, SANBI, DRDLR)

		4		Eastern cape						
		9		[waiting for the latest CBA map]						
		Wallest State of the State of t		Northern Cape						
				http://bgis.sanbi.org/Projects/Detail/203						
				Western Cape						
				http://bgis.sanbi.org/Projects/Detail/194						
		4		Free State						
				http://bgis.sanbi.org/Projects/Detail/180						
		A CAMPAGE AND ADDRESS OF A SECOND STREET	pport Areas (ESAs)	Same links as CBAs (above)						
		Strategic Wa	ter Source Areas (SWSAs)	CSIR						
		Autoritation of the Control of the C	operation of the state of the s	David Le Maitre < DIMaitre@csir.co.za>						
		Nature-based	tourism or scenic features							
2.	Environmental	Natural	Floodplains							
	Hazards	Hazards	Dongas & Erosion	19 Files 1 To 1 Indicated Area and 19 Files 10 To 1						
			Sink holes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		7	Mass earth movements							
		***	Extreme weather prone							
		A - A - A - A - A - A - A - A - A - A -	areas							
		of notice and a second	Steep slopes	THE RESERVE TO STREET, AND ADDRESS OF THE PARTY OF THE PA						
		Man-made	Waste landfill sites							
		Hazards	Industrial pollution sites							
3.	Cultural and	Burial sites	industrial political sites	http://www.sahra.org.za/						
٠.	heritage		d Heritage Sites (UNESCO)	Into A www.scanca.org.com						
	resources	National herit		https://egis.environment.gov.za/						
		Nauonai nem	age siles	http://www.sahra.org.za/						
		Dravinsial Ha	ritera Areas	IIIIp.//www.saina.org.za/						
		Provincial He		Like the second						
		Local Heritag		http://www.sahra.org.za/						
		Cultural lands		http://www.sahra.org.za/						
		_	al sites & Paleontological	http://www.sahra.org.za/						
	THE RESIDENCE OF THE SECOND	sites	ermanarilliakunususilmustumaanaansusillarillilmininta – kommessi rommaanamaanaana – , , ka e , , , aa, aa	and in the managemental prints and and analysis of the state of the st						
4.	Agricultural	High potentia	l agricultural land	http://www.arc.agric.za/Pages/Home.aspx						
	resources	5		Anneliza < <u>AnnelizaC@daff.gov.za</u> >						
5.	Mining	Mine tailings	mengeric, sangan i, zanzami aranna ara anganangaman sansaganan apir , ini apisnap ga	Department of Mineral Resources (DMR)						
		Current and p	past mining areas							
		Acid-mine dra	ainage affected features							
		Areas contan	ninated/degraded by mining							
6.	Infrastructure	Railways								
		Roads	The second secon	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
		Pipelines	entrebuild großen. Milde March Marchanan de bereigheite marche i Australian andere er sons — sons er							
		THE SAME THE PROPERTY OF THE PARTY OF THE PA	treatment facilities							
		Renewable/n infrastructure	on-renewable energy							
7.	Current land	Current land		https://egis.environment.gov.za/						
	uselcover									

2.1.5 Unmapped Criteria: Advice on what and how they must be mapped

If there is a significant Environmental Criterion that is unmapped, the Municipality should budget for and undertake an exercise of mapping those specific Environmental Criteria3. This can be done in-house or out-sourced to service providers with the requisite competences (e.g. GIS, Cartography, Remote Sensing).

TABLE 3: UNMAPPED CRITERIA: ADVICE ON WHAT AND HOW THEY MUST BE MAPPED

	teria eatures/Land Use)	Unmapped Sub-Criteria	Advice on what and how they must be mapped						
1.	Environmental Resources	Nature-based tourism or scenic features	GIS equipment such as GPS can be used to identify areas in the field and transfer data onto laptop to create vector points or polygon areas for the identified sites.						
2. Environme Hazards	Environmental Hazards	Floodplains	Satellite imagery mapping using medium resolution imagery such as Landsat or Sentinel. This requires Image Classification techniques, using Raster analysis software (e.g. ENVI which is compatible with ArcGIS). Site verification should be done to assess accuracy of the image mapping.						
		Dongas & Erosion	Satellite imagery mapping using medium resolution imagery such as Landsat and Sentinel. This requires Image Classification techniques, using Raster analysis software (e.g. ENVI which is compatible with ArcGIS). Site verification should be done to assess accuracy of the image mapping.						
		Sink holes	On-site mapping of the feature (including the buffer area) using GIS equipment such as GPS. Sink holes could also digitized from Aerial photographs.						
		Mass earth movements	Weather satellite monitoring – satellite imagery						
		Extreme weather prone areas	Weather satellite monitoring – satellite imagery. When areas are identified, "hotspot mapping" can be done through a desktop exercise to show extreme weather prone areas.						
		Waste landfill sites	GIS equipment such as GPS used to identify areas in the field and transfer data into !aptop to create vector points or polygon areas for the sites.						
		Industrial pollution sites	Aerial photos can also be used to map waste landfill sites. GIS equipment such as GPS used to identify areas in the field and transfer data into laptop to create vector points or polygon areas for the sites.						
3.	Cultural and heritage resources	Burlal sites	Field on-site mapping using GIS equipment such as a GPS to identify areas and be able to acquire coordinates of site. The site co-ordinates can be transferred into shapefile to show the different locations. Aerial photos can also be used to map burial sites.						
		Cultural World Heritage Sites (UNESCO)	Field on-site mapping using GIS equipment such as a GPS to identify areas and be able to acquire coordinates of sites. The site co-ordinates can be transferred into shapefile to show the different locations.						

³ These features only need to be mapped if they will have a significant impact/influence on the SDF and the spatial outlook of the Municipality.

		National heritage sites	Field on-site mapping using GIS equipment such as a GPS to identify areas and be able to acquire coordinates of site. The site co-ordinates can be transferred into the laptop as a shapefile, to show the different locations.
		Provincial Heritage Areas	Field on-site mapping using GIS equipment such as a GPS to identify areas and be able to acquire coordinates of site. The site co-ordinates can be transferred into the laptop as a shapefile, to show the different locations.
		Local Heritage Areas	Field on-site mapping using GIS equipment such as a GPS to identify areas and be able to acquire coordinates of site. The site co-ordinates can be transferred into the laptop as a shapefile, to show the different locations.
		Cultural landscapes	Field on-site mapping using GIS equipment such as a GPS to identify areas and be able to acquire coordinates of site. The site co-ordinates can be transferred into the laptop as a shapefile, to show the different locations.
		Archaeological sites & Paleontological sites	Field on-site mapping using GIS equipment such as a GPS to identify areas and be able to acquire coordinates of site. The site co-ordinates can be transferred into the laptop as a shapefile, to show the different locations.
4.	Agricultural resources	High potential agricultural land	Medium (e.g. Landsat and Sentinel) and high resolution imagery (e.g. SPOT, Quickbird) can be used to identify land cover and land use areas which should be avoided on the basis of Agricultural use/potential. This should include such as plantations and agricultural hubs. Such agricultural land tends to be in close proximity to water source areas (rivers and dams).
5.	Mining	Mine tailings	Satellite imagery mapping using medium resolution imagery such as Landsat and Sentinel. This requires Image Classification techniques, using Raster analysis software (e.g. ENVI which is compatible with ArcGIS). Site verification should be done.
		Current and past mining areas	Take the point data and overlay that with the cadastre layer so that the full extent of the mine can be shown. This is especially important for underground mines which have small physical footprints but can extend throughout the entire cadastre underground.
		Acid-mine drainage affected features	Field on-site mapping using GIS equipment such as a GPS to identify areas. Aerial photography can also be used for mapping.
		Areas contaminated/ degraded by mining	Satellite imagery mapping using medium resolution imagery such as Landsat and Sentinel. This requires Image Ciassification techniques, using Raster analysis software (e.g. ENVI which is compatible with ArcGIS). Site verification should be done to assess accuracy of the image mapping.
6.	Infrastructure	Waste water treatment facilities	Field on-site mapping using GIS equipment such as a GPS to identify areas. Aerial photography can also be used for mapping.
		Renewable/non-renewable energy infrastructure	Field on-site mapping using GIS equipment such as a GPS to identify areas. Aerial photography can also be used for mapping.
7.	Current land use/ cover	Current land use/cover	Municipalities should use the 2014 land cover, but if a province has more recent land cover data, they can use that layer.

2.1.6 Ensure that Criteria/Features include buffers where appropriate

The Municipality should consider appropriate buffer zones around/along key features, to insulate areas of environmental sensitivity from adverse external impacts. Although there is no specific national law/legislation that provides directives on the exact standards/extent of buffer zones for various environmental features, guidance can be deduced from the buffer guideline for some environmental features which the Institute of Natural Resources (INR) prepared. Buffering on various Land Use Scheme features might also be represented by Open Space Systems in other instances (e.g. the Durban Metropolitan Open Space System (D'MOSS).

Some of the national-level guidance on buffer-setting that can be domesticated includes, for example, the National Environmental Management: Protected Areas Act, 2003 (Act No. 57 of 2003) (NEM: PAA). Through this Act, the Minister for Environmental Affairs may declare an area as a protected environment in order to regulate such an area as a buffer zone. Based on NEM: PAA, the Department of Environmental Affairs (DEA), developed a framework called "Biodiversity Policy and Strategy for South Africa: Strategy on Buffer Zones for National Parks" (2012). The policy stipulates that the government will use the Municipal SDF process to establish a system of integrating environmental buffer zones to enhance environmental protection.

A select few processes through which the environmental protection could be entrenched by way of buffer zones (within the context of Municipal SDFs) are as follows:

- Provincial EMFs/Environmental Management Tools: Many of the Provincial Environmental Management Frameworks contain useful guidelines on buffer-setting for key land uses and environmental features in the Province (and by extension Municipalities). Examples include, the Gauteng Provincial Management Framework (GPEMF) and Western Cape Biodiversity and Spatial Planning Hand Book (2017). It is important that the process of developing an SDF incorporates the appropriate information on buffers for identified environmental features in a Municipality;
- As part of the Status Quo Analysis phase of the Municipal SDF process, Municipalities should embed an analysis of the environmental features in their spatial jurisdictions and where existing national or provincial guidelines for buffer-setting exist, these should be indicated;
- Use of Land Use Schemes: As an example, Rustenburg has used a Land Use Scheme to determine a 200 metre buffer zone of low impact development around an environmental feature of 'Hills and Ridges; and
- Municipal By-Laws: Another way of ensuring that criteria/features include buffers, where appropriate, would be through Municipal By-Laws. This has been successfully

implemented in Cape Town, where By-Laws provide for an intermediate business zone between high intensity non-residential uses and residential areas.

It is, therefore, important that the SDF processes accentuate the aspect of environmental protection by adhering to guidelines for buffer zones and applying them through the Land Use Scheme, as well as enforcing them through Municipal By-Laws.

2.2 Step 2: Overlaying the Spatial Datasets

The order in which shapefile layers are arranged in GIS determines what is ultimately depicted on the output map. Within a data frame (dataset), the layers positioned at the top will draw over those listed below them, and so on, down the list. However, it is possible to move layers around to adjust/modify their drawing order (i.e. what is ultimately projected on the map). As a general rule, when overlaying datasets in GIS, points should always be the first step in the hierarchy, followed by lines, then polygons at the bottom. The services represented by lines and topography lines should always be the first layer in a map layout. Rural and urban transect areas follow, together with utilities infrastructure such as rail and road networks linking settlements towards and within the urban and rural areas. Settlements (built-up areas) should then follow. When considering the sites for potential agriculture, the sensitive landscapes layer/s (Protected Areas (PAs), Critical Biodiversity Areas (CBAs), Ecological Support Areas (ESAs), Strategic Water Source Areas (SWSAs), Nature-based tourism or scenic features) are important as this highlights areas to be avoided by development. Table 4 presents the proposed datasets overlaying structure, which Municipalities can adopt and adapt. NB: Overlay order (top to bottom) 1-top layer and 10bottom layer. Polygons layers at the bottom followed by line layers then points on top.

TABLE 4: OVERLAYING THE SPATIAL DATASETS

Criteria (Features/Land Use)	Sub-Criteria	Overlay Order
1. Environmental	Protected Areas (PAs)	3.1
Resources	Critical Biodiversity Areas (CBAs)	32
	Ecological Support Areas (ESAs)	33
	Strategic Water Source Areas (SWSAs)4	3.4
	Nature-based tourism or scenic features ⁵	7.1
2. Environmental Hazards	Floodplains	3.5
(Natural & Man-made)	Dongas & Erosion	3.5
	Sink holes	3.5
	Mass earth movements	3.5
	Extreme weather prone areas	3.5
	Waste landfill sites	3.5

⁴ Only show the outline of this feature as they are quite large and they also contain CBAs within them.

⁵ This will depend on spatial extent of these features. If these are large areas, then it makes sense to overlay the CBAs and PAs over them, but if these are smaller units, the proposed order should prevail. Alternatively, the Municipalities should simply include the Tourism Nodes.

		Industrial pollution sites	3.5
	Cultural and heritage	Burial sites	3.6
	resources	Cultural World Heritage Sites (UNESCO)	3.6
		National heritage sites	3.6
		Provincial Heritage Areas	3.6
		Local Heritage Areas	3.6
		Cultural landscapes	3.6
		Heritage Protection Overlay Zones (or their equivalent)	3.6
		Archaeological sites & Paleontological sites)	3.6
	Agricultural resources	High potential agricultural land	3.9
	Mining	Mine tailings	3.7
		Current and past mining areas	3.7
		Acid-mine drainage affected features	3.7
		Degraded lands	3.7
	Infrastructure	Railways, roads, pipelines	2.2
		Waste water treatment facilities	2.1
		Renewable/non-renewable energy infrastructure	3.8
7.	Current land use/cover	Current land use/cover	4.0

2.3 Step 3: Identify Compatible/Incompatible Land Uses or Activities

For each criterion/feature - the Standards indicate what land uses are compatible and which are not. This predetermined, pre-existing Compatibility/Incompatibility Matrix should be used by Municipality as a guidance on compatibility of land use. Notwithstanding, CBAs must stay in largely natural ecological condition and ESAs must retain ecological processes, which often requires at least semi-natural ecological condition.

Before any land use change, the Municipality must ensure that the 'from-to' land use changes compatible, in order to maintain sustainability. are (Compatibility/Incompatibility Matrix) provides guidance on how Municipalities can determine compatible and incompatible land uses, based on prevailing environmental conditions. It uses a 3-scale spectrum of:

- o Permissible: land uses that are unlikely to compromise the environmental objectives;
- o Restricted: land uses that may compromise the environmental objective and are only permissible under certain conditions; and
- o Not Permissible: land uses that will compromise the environmental objective and are not permissible.

TABLE 5: MATRIX SHOWING COMPATIBLE AND INCOMPATIBLE LAND USES

		Agriculture				n Spi	ce	Tou	Residential			Business	Industrial				Transport & Utility					
	Arabin Lands	Agon allared Infrastration	coverings, & Clame Rabotong	Forwardy/ Plantations	Providence Softere. Avera	Other finture Areas	Oppn Space	trav Impact Tourism	Togh Impact Tourism 6 Record	Turk Residential	10161616161	Sthechesidential	Ultran (milestoca	John mpach & Segeral	The latest	Wring-Quaryligia Open Calif	Ving Properties	Transport Services	Roads & Hall	Waller, Sessige Catcherrrancher	mercipoline povertinas caraci	Generalithen
SUB-CATEGORY					11114		11	linviro		l obj	ectiv	e/s a.	t may compa nd are only s			N + No Lineare meters	diser la	e0.00	NO.14	100	emerenti	
Protected Area (PAI)	īV	ĪV	R	N	Y	R.	R	R	N	N	R	N	N	N.	N	N	N	N	R	R	N	N
Critical Biodiversity Armi (CRA) (N	N	R	N	Y.	Y	Y	R	N	N	R	N	N	N	N	N	N	N	R	R	N	N
Brilla proisuppon a rea (ESAs)	R	R	R	R	A.	10.	板	R	N	R	R	N	N	N	N	N	R	R	R	R	R	R
Annual Control	R	R	Ψ.	-4	Y	Y	Y	Y	R	R	R	N	R	R	N	R	R	R	R	N	R	R
Cultural and Heritage Resources	N	R	R	R	4	V.	· y	¥	N	Y	Υ	N	N	N	N	N	N	R	R	N	R	R
Agricultural Resources	Y	Y	Y	Y	R	R:	-	- 19	N	R	R	N	N	R	N	N	N	R	R	N	R	R
Mining	N	N	N	R	R	R	Υ	*	N	R	R	N	N	R	N	Υ	Y	R	R	R	R	R
P. H. Sut	R	R	R	R	R	R	Y	Y	R	R	γ.	R	R	Ψ.	R	N	N	Υ	Υ	Y	Υ	Y

Be that as it may, the Matrix (which is a Guideline) should not substitute for bold and committed mapping of environmental resources and hazards (e.g. reserving a river flood-plain as a no-go development area). In cases where existing tools that provide sufficient to provide decision making guidance are available (e.g. D'MOSS in eThekwini), such tools could be used in tandem with the Matrix.

Based on the Compatibility/Incompatibility Matrix, the Municipality should identify current and future challenges to its environment, with particular attention to their spatial implications. Where possible, an area could have a suite of potential/actual complimentary land uses, as opposed to just one land use. There is therefore a need to find synergies between biodiversity, environmental conservation, land-use/development and sustainable livelihoods. On the basis of these Standards, the Municipality must, among other things, enable the following:

2.4 Step 4: Objectives, Targets, Indicators & Strategy

The 'domestication' of international instruments into national and provincial policies and plans cumulatively provide the framework for defining Municipal Environmental Objectives, Targets (how much of each feature is needed to conserve it), and Indicators/Measures. To that end, Municipalities should consult such provincial instruments, as well as draw from the RSA Constitution and the National Development Plan (NDP) - which sets the country's

strategic direction. In addition, the local objectives and targets should be girded by NEMA Principles, and SPLUMA Principles. The "domestication" should be in accordance to the Environmental Criteria existing within the Municipal jurisdiction. Equally importantly, the Municipality should develop a Strategy (or Strategies) to achieve the set Objectives and Targets, with the Municipal performance being measured against the predetermined Indicators/Measures. This cascading applicability of various SDFs is fundamental in that it helps to achieve environmental Objectives/Targets from National, through Provincial, Regional and down to Municipal levels. The fact that each sequentially more detailed SDF has to align with the Objectives/Targets of the one above, is pertinent to achieving national, provincial and local Objectives and/or Targets. The diagram below depicts the vital linkages (correlations) between the Objectives, Targets, Indicators and Strategies.

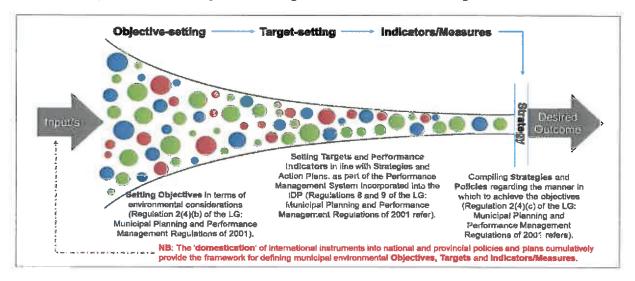


Figure 1: Objectives, Targets and Indicators

2.5 Step 5: Resolution of Land Use Conflicts

One of the biggest challenges in integrating/harmonizing/aligning environmental and development planning is land use competition. As such, conflict will arise in the development and implementation of SDFs. Areas of land use competition/conflict relate to such land uses as urban use vs. agricultural use, agricultural use vs. mining use, conservation vs. development, CBA vs. National Mineral Resource. Conflict might be on the basis of political socio-economic desires which might be disparate to environmental concerns. In such instances, principles-based conflict resolution and decision making should be adopted. Fundamentally, conflict resolution must adhere to the SPLUMA / NEMA principles. Some of the fundamental principles that should guide conflict resolution are as follows:

- Fundamental Principles: Any land use change needs to be tested against a number of principles (e.g. Ecological Sustainability; Justifiability (in the Municipal context); Promotion of Equity; Promotion of Accessibility of public places/resources; Desirability; Public Interest; Municipal Priorities, etc.). A Municipality should not seek to maximise revenue at the expense of key ecological infrastructure (e.g. features regulating against flooding, or storm surge impacts). It is important to consider if the development (or land use change) is desirable — qualitative attributes that make a particular development attractive or non-attractive. In most cases, while many areas are developable, the degree of desirability differs in terms of costs, location, long-term viability, etc. The Municipality must determine what is ecologically sustainable and what is justifiable. This has not been determined at a National level, hence it is one major issue that the Municipality should grapple with. National government has proposed some foundational strategic permutations of what is 'ideal', but what is "justifiable" should be considered on a case-by-case basis within the context of the Municipality. Be that as it may, justifiability should be viewed in conjunction with the promotion of "equity and granting public access". In some instances, the Municipality should determine whether it is justifiable to sacrifice national conservation targets to achieve socio-economic development, public access, etc. There might be need for sustainable compromises, depending on the objectives the Municipality seeks to achieve.
- Mitigation Hierarchy (Avoid, Mitigate, Restore, Offset): use it in Option Analysis, to guide the land use allocation debate. Weigh the competition by looking at alternative ways to use that land, in order to avoid conflict. The Municipality should not rush to just offset. Instead, the Mitigation Hierarchy should be used to explore if there are any possibilities of avoiding the impact, before considering offsetting or even a trade-off.
- Offsets: Where possible, environmental damage should not happen, but if it does, offsets should be implemented. Offsetting should be well thought through, right from the beginning. Offsets should be considered proactively they are not for sorting out environmental damage that has already occurred. Instead, offsets are for determining if a project/ program which will cause environmental damage can be mitigated through an "Offset", which would need to be in place prior to the project/ program commencing. NB: There are certain situations where offsetting (nor any

engineering mitigation) is not appropriate and should not be considered (e.g. delineated "red areas" that are at high risk).

- o Full Cost Accounting: Municipalities must understand, both the infrastructure cost (in construction and operation) and the financial cost post-development (maintenance) of a land use change.
- Institutional Architecture Reconfiguration: In the long term, Municipalities should consider, where possible, integrating (amalgamating) the planning function and the environmental function into one. This model has been successfully implemented in the Western Cape, albeit at provincial level. It goes a long way in minimising the typical disjuncture and helps avoid certain conflicts before they even occur.
- High Quality Discussion and Debate: Land use conflict should be resolved via debate by stakeholders, with a view to arriving at an agreed view, but most importantly, sustainable outcome. The mitigation hierarchy must inform how that debate must happen. The concept of 'Strategy' could be used to temper the rigidity of the mitigation hierarchy - in instances where calculated risk has been/should be taken (e.g. Water Front), the Municipality should consider the recoverability of the Capital Cost⁶. Therefore, in those cases, there should be explicit Strategy to maximise the benefits.
- o Win-Win (re)solutions: The Municipality should always seek/support development options that can be regarded as win-win solutions in that they meet both developmental and environmental objectives simultaneously.
- Fixing Data Errors: Part of the problem is mapping errors. By just fixing some of the mapping issues/queries, land use competition could be addressed. Thereafter, the Municipality can meet with the different role players to assess the legitimacy of the issues and also whether the issues could be easily resolved.
- o Integrate, Harmonise and Align Disparate Legislations: Analyse the SDF vs. other legislations specifically to understand, from a spatial perspective, where there are conflicts. Conflict resolution can be done by integrating, harmonising and aligning disparate legislations and spatial planning systems (e.g. an SDF and EMF developed separately). In some cases, the Municipality will end up with two separate planning documents, albeit with a common view and 'speaking the same language' (case of Saldana Bay, Western Cape). However, if the integration is done at the development stage, the Municipality can end up with one document with incorporates both the SDF and EMF (case of Mossel Bay). Ideally, the EMF and SDF must eventually have/use the same map.
- Buffers: some conflicts could be resolved by referring/adhering to the buffer guideline prepared by the INR - it should be implemented to buffer environmental features.

⁶ Water Front recovers the development and maintenance cost many times over and the Municipality is able to manage that situation.

Section C - GUIDELINES (BEST PRACTICE) -

Section C: Guidelines (Best Practice)

3 Guidelines (Best Practice)

3.1 Guidline1: Valuation of Ecological Assets

Box 1: Guidance on Valuation of Ecological Assets

The idea of putting monetary value on environmental/ecological assets (in order to resolve competing and conflicting interests), is complex controversial and has been highly contested. Moreover, the subjective element undercutting monetary valuation techniques would pose a danger to uniformity and standardisation, thereby making land use conflict resolution and decision making difficult Consequently, having considered a range of valuation methods and techniques, Municipalities should not use monetary valuation techniques. Environmental assets are priceless and should not be looked at through an economic/ business lens, lest they may be undervalued. In addition, highly scientific methods would not be suitable to most Municipalities where there are capacity/expertise constraints. As such, instead of attempting to put monetary value on ecological/environmental assets, there is need for high quality discussion that considers socio economic, ecological/environmental and cultural factors. Therefore, on a case by case basis, a Municipality can determine the importance of ecological assets, taking into consideration the local existing conditions and predetermined priorities Notwithstanding the aforementioned limitations/risks, in cases where sufficient capacity and resources exist to undertake monetary evaluation of environmental assets in a responsible manner that does not compromise environmental protection, a Municipality could take the liberty to make a case to responsible/relevant environmental Authorities (e.g. DEA), regarding the use and/or selection of scientific valuation tools/methods, which authority will then make the necessary determinations.

3.2 Guidline2: Parameters for exclusions from EIA requirements on certain Listed and Specified Activities

The purpose of the discussion in this section is to give guidance on how a municipal SDF that has been prepared in compliance with the Minimum Environmental Standards can provide a good framework for the identification of activities and areas that can be excluded from the requirement to obtain environmental authorisations. It is emphasised however that the objective of such as an SDF is not to provide automatic or blanket exclusions. Such exclusions are to be done on a case by case basis and with due regard to the established procedures and processes.

The NEMA requires that an environmental authorisation is obtained before any activity which has been identified in terms of NEMA as Listing Notices, can commence⁷. The activities identified in the NEMA Listing Notices apply throughout the Republic. However, as already noted, the Minister, or an MEC with the concurrence of the Minister, may, in terms of section 24(2)(c) and (e) identify activities in the Listing Notices that are excluded from the requirement to obtain an environmental authorisation from the competent authority in specified geographic areas. Such a list of activities must be based on an environmental management instrument or spatial development tool adopted by the Minister or an MEC, with the concurrence of the Minister.

-

⁷ Section 24, 24D of NEMA

The rationale for the exclusion of activities from the requirement to obtain environmental authorisation is to reduce the legislative burden on the sector where there are no issues of concern, such as areas that are of least concern from a biodiversity conservation perspective.

A SDF could be adopted as an instrument which could support the exclusion of activities from the need obtain and environmental authorisation if they have been prepared in a manner that meets the approval of the MEC and Minister. The SDF would also need to indicate that it is intended to provide the basis of such exclusions. Prior to such adoption, notice must be given in the Government Gazette indicating the intention to adopt the SDF as an instrument to support an exclusion of identified activities.

The road map to development of an SDF that can facilitate exclusions of certain activities can be summarised as a 3-step process:

- a. A strategic assessment of the environmental pressures and environmental sensitivities which are then taken into consideration and aligned with land use measures according to the environmental management tools employed in the municipality. This may include environmental management zones identified in the relevant Environmental Management Framework of the municipality in line with the applicable management guidelines.
- b. The SDF must be prepared and presented in accordance with the requirements of an environmental management instrument. Areas of compatible land uses must be properly zoned and spatially represented and activities for exclusion per zone identified. Incorporating minimum environmental standards into SDFs will not automatically lead to such exclusions, but could form the basis for identifying specific activities that currently require EA to be excluded from that requirement, if sufficient information (e.g. specific zones where the exclusions are applicable and the mitigation standards that must be met) is provided.
- c. The third step would involve consultation on the proposed exclusions in the prescribed manner.

As mentioned above, exclusion of activities should be done on a case by case basis and the following principles should apply:

- The embodiment of the principle of spatial sustainability through the protection of high potential and unique agricultural land through land use mechanisms in support of food security as a national norm, preservation of land for production and enablement of environmental supportive agricultural practices;
- Striving for sustainability through the protection of biodiversity and ecological functioning; and

 Introduction of special land use parameters in spatially demarcated areas which acknowledges levels of acceptable change and support a level of economic development.

3.3 Guidline3: Application of Minimum Standards within the Framework of a Land Use Scheme

In considering how Minimum Environmental Standards can be enforced through Municipal spatial planning, cognisance should be taken of the SPLUMA requirements for Land Use Schemes as a tool that gives effect to SDFs and in particular, an enabler for environmental management.

SPLUMA s24(2)(b) states that a land use scheme must, inter alia

"take cognisance of any environmental management instrument adopted by the relevant environmental management authority and must comply with environmental legislation"

To that effect, Land Use Schemes (LUS) must, in terms of section 24(2)(g) of SPLUMA, give effect to SDFs and Integrated Development Plans (IDPs). It is important for Municipalities to observe this fundamental aspect.

Section D - ANNEXURES -

MINIMUM ENVIRONMENTAL STANDARDS

Draft Document (DEA, SANBI, DRDLR)

Section D: ANNEXURES

4 Annexures

TABLE 6: STANDARD DESCRIPTIONS OF FEATURES/SUB-CRITERIA

Features/Sub-criteria	Brief Description ⁸	Why it should be mapped (Desired Management Objective)
Protected Areas (PAs)	An area of land or sea that is formally protected in terms of the Protected Areas Act and managed mainly for biodiversity conservation. Includes state-owned Protected Areas and contract Protected Areas.	Must be kept in a natural state, with a management plan focused on maintaining or improving the state of biodiversity. A benchmark for biodiversity.
Critical Biodiversity Areas (CBAs)	 An area that must be maintained in a good ecological condition (natural or near-natural state) in order to meet biodiversity targets. CBAs collectively meet biodiversity targets for all ecosystem types as well as for species and ecological processes that depend on natural or near-natural habitat that have not already been met in the protected area network. One of five broad categories on a CBA map, and a subset of biodiversity priority areas. CBA Map includes: classified & mapped ecosystem types, species of special concern, landscape-scale ecological corridors, unique or special habitats or features, areas of importance for ecological processes, ecological infrastructure. 	CBA map should form the 'green layer' that Municipalities should consider as baseline information.
Ecological Support Areas(ESAs)	An area that must be maintained in at least fair ecological condition (semi-natural/moderately modified state) in order to support the ecological functioning of a CBA or protected area, or to generate or deliver ecosystem services, or to meet remaining blodiversity fargets for ecosystem types or species when it is not possible or no necessary to meet them in natural or near-natural areas. One of five broad categories on a CBA map, and a subset of biodiversity priority areas. *ESA Map also includes: Other Ecological Support Areas, Other Natural Areas, and Core 1 and Core 2 from the Broad Provincial Spatial Planning Categories.	Should be maintained in a functional, near-natural state. Some habitat loss is acceptable, provided the underlying biodiversity objectives and ecological functioning are not compromised.
Strategic Water Source Areas (SWSAs)	An area that supplies a disproportionate amount of mean annual run-off to a geographical region of interest. in South Africa, Strategic Water Source Areas make up only 8% of the country's land area but deliver 50% of mean annual run-off.	
Nature-based tourism or scenic features	Includes a broad range of tourist and recreational and ecotourism facilities in support of sustainable rural tourism, businesses and communities, as well as to provide for the recreational and leisure needs of rural/urban dwellers. Broad categories are: low impact facilities (e.g. camp sites, hiking and mountain biking trails, zip-lines, etc); and high impact facilities (golf courses, golf estates, polo estates, polo fields).	
Natural hazards (e.g. floodplains,	Natural Hazards are naturally occurring physical phenomena caused either by rapid or slow onset	

⁸ By and large, the descriptions draw from the definitions provided in the Lexicon of Biodiversity Planning in South Africa, First Edition, Beta Version (SANBI, 2016).

geo-hazards)

events which can be geophysical (earthquakes, landsildes, tsunamis and volcanic activity), hydrological (avalanches and floods), climatological (extreme temperatures, drought and wildfires), meteorological (cyclones and storms/wave surges) or biological (disease epidemics and insect/animal plagues, infestation and invasive species.). A Natural Hazard is any natural event that has the potential to endanger human life, the economy and property. Some natural hazards can be provoked or affected by anthropogenic processes (e.g. land-use change, drainage and construction).

Man-made hazards (e.g. waste sites, industrial pollution sites, and chemical contamination)

Cultural landscapes or

features

Man-made Hazards are events that are caused by humans and occur in or close to human settlements. This can include environmental degradation, pollution and waste sites, chemical contamination, and industrial accidents.

Refers to "a geographic area (including both cultural and natural resources and the wildlife or domestic animals therein), associated with a historic event, activity, or person or exhibiting other cultural or aesthetic values." A cultural landscape can be thousands of acres or a tiny homestead. It can be a grand estate, industrial site, park, garden, cemetery, campus, and more. There are primarily four types of cultural landscapes, although any given landscape may fall under more than one typology: Designed Landscapes; Ethnographic Landscapes; Historic Sites; and Vernacular Landscapes.

Agricultural resources

This Criteria includes all forms of agriculture, including but not limited to: intensive agriculture (high potential and unique agricultural lands); forestry or timber plantations; irrigated crop cultivation (horticulture, orchards, vineyards); dry-land crop cultivation; space extensive agricultural enterprises; extensive agriculture (livestock farming, game farming).

This refers to all concentrations or occurrences of

Mining resources

extraction.

By and large, this encompasses Utilities Infrastructure (e.g. railways, roads, pipelines, waste water treatment facilities, renewable/non-renewable energy

infrastructure)

material of intrinsic economic interest in or on the

earth's crust in such form, quality and quantity that there are reasonable prospects for eventual economic Spatially locating poliution sites enables stakeholders to integrate disaster management / avoidance directly into planning at a local level.

Cultural (andscapes are an invaluable legacy and should thus be safeguarded. They provide scenic, economic, ecological, social, recreational, and educational opportunities helping communities to better understand themselves. Neglect and inappropriate (incompatible) development pose a risk to such shared heritage. Some land use decisions threaten the survival and continuity of the same. The ongoing care and Interpretation of these sites improves society's quality of life and deepens a sense of place and identity for future generations.

Infrastructure

DEPARTMENT OF ENVIRONMENTAL AFFAIRS

NO. 648 10 MAY 2019

NATIONAL ENVIRONMENTAL MANAGEMENT ACT, 1998 (ACT NO. 107 OF 1998)

PROCEDURES TO BE FOLLOWED FOR THE ASSESSMENT AND MINIMUM CRITERIA FOR REPORTING OF IDENTIFIED ENVIRONMENTAL THEMES IN TERMS OF SECTION 24(5)(a) AND (h) OF THE NATIONAL ENVIRONMENTAL MANAGEMENT ACT, 1998, WHEN APPLYING FOR ENVIRONMENTAL AUTHORISATION

I, Nomvula Paula Mokonyane, Minister of Environmental Affairs, hereby give notice of my intention to prescribe general requirements for undertaking an initial site sensitivity verification and for protocols for the assessment and minimum reporting requirements of environmental impacts for environmental themes for activities requiring environmental authorisation, as contained in the Schedule hereto. When the requirements of these protocols apply, the requirements of Appendix 6 of the Environmental Impact Assessment Regulations, promulgated under sections 24(5) and 44 of the National Environmental Management Act, 1998 (Act No. 107 of 1998), are replaced by these requirements.

Each protocol applies exclusively to the environmental theme identified within its scope. Multiple themes may apply and assessments for these themes must be undertaken in accordance with the relevant protocol, or, where no specific protocol has been prescribed, in accordance with the requirements of the Environmental Impact Assessment Regulations, as amended.

Members of the public are invited to submit written comments or inputs to the acting Minister, within 30 days of publication of this notice in the *Gazette*, to the following addresses:

By post to: The Director-General:

Department of Environmental Affairs

Attention: Ms D Fischer Private Bag X447 PRETORIA

0001

By hand at:

Reception, Environment House, 473 Steve Biko Road, Arcadia, Pretoria, 0083

By e-mail: DFischer@environment.gov.za

Any inquiries in connection with the Notice can be directed to (012) 399 9315.

Comments received after the closing date may not be considered.

NOMVULA PAULA MOKONYANE MINISTER OF ENVIRONMENTAL AFFAIRS

SCHEDULE

PART A: GENERAL REQUIREMENTS

 General requirements for undertaking an Initial Site Sensitivity Verification where no specific assessment protocol has been identified

PART B: ENVIRONMENTAL THEMES

1. Agriculture

1(a) Protocol for the assessment and reporting of environmental impacts on agricultural resources

2. Avifauna

2(a) Protocol for the assessment and reporting of environmental impacts on avifauna species by onshore wind energy generation facilities where the electricity output is 20 megawatts or more

3. Biodiversity

- 3(a) Protocol for the assessment and reporting of environmental impacts on terrestrial biodiversity
- 3(b) Protocol for the assessment and reporting of environmental impacts on aquatic biodiversity

4. Noise

4(a) Protocol for the assessment and reporting of noise impacts

5. Defence

5(a) Protocol for the assessment and reporting of environmental impacts on defence installations

6. Civil Aviation

6(a) Protocol for the assessment and reporting of environmental impacts on civil aviation installations

PART A: GENERAL REQUIREMENTS FOR UNDERTAKING AN INITIAL SITE SENSITIVITY VERIFICATION WHERE NO SPECIFIC ASSESSMENT PROTOCOL HAS BEEN IDENTIFIED

1. SCOPE

These requirements must be applied when undertaking an Initial Site Sensitivity Verification for a site selected on the national web based environmental screening tool for which no specific assessment protocol related to any theme has been identified. The purpose of the Initial Site Sensitivity Verification is to confirm or dispute the current use of the land and the potential environmental sensitivity of the site as identified by the national web based environmental screening tool for the specific environmental theme being considered.

The national web based environmental screening tool can be accessed at:

https://screening.environment.gov.za/screeningtool

2. REQUIREMENTS FOR INITIAL SITE SENSITIVITY VERIFICATION

- 2.1 The Initial Site Sensitivity Verification must be undertaken by an environmental assessment practitioner or a registered specialist with expertise in the relevant environmental theme being considered.
- 2.2 The Initial Site Sensitivity Verification must be undertaken through the use of:
 - (a) a desk top analysis, using satellite imagery; and
 - (b) a preliminary on-site inspection to identify if there are any discrepancies with the current use of land and environmental status quo versus the environmental sensitivity as identified on the national web based environmental screening tool, such as new developments, infrastructure, indigenous/pristine vegetation, etc.
- 2.3 The outcome of the Initial Site Sensitivity Verification must be recorded in the form of a report that-
 - (a) confirms or disputes the current use of the land and environmental sensitivity as identified by the national web based environmental screening tool;
 - (b) contains a motivation and evidence (e.g. photographs) of either the verified or different use of the land and environmental sensitivity; and
 - (c) is submitted together with the relevant reports prepared in accordance with the requirements of the Environmental Impact Assessment Regulations.

3. REQUIREMENTS FOR ENVIRONMENTAL ASSESSMENT

As no specific assessment protocol has been prescribed, the required level of assessment must be based on the findings of the Initial Site Sensitivity Verification and must comply with Appendix 6 of the Environmental Impact Assessment Regulations promulgated under sections 24(5) and 44 of the National Environmental Management Act, 1998 (Act No. 107 of 1998) (The Act), where a specialist assessment is required.

PART B: ENVIRONMENTAL THEMES

1. AGRICULTURE 1(a) - PROTOCOL FOR THE ASSESSMENT AND REPORTING OF ENVIRONMENTAL IMPACTS ON AGRICULTURAL RESOURCES

1. SCOPE

This Protocol provides the criteria for the assessment and reporting of impacts on agricultural resources for activities requiring environmental authorisation. The assessment requirements of this Protocol are associated with a level of environmental sensitivity identified by the national web based environmental screening tool for agricultural resources, which is based on the land capability evaluation values as provided by the Department of Agriculture, Forestry and Fisheries¹. If any part of the proposed development falls within an area of "very high" sensitivity, the requirements prescribed for such sensitivity apply.

The national web based environmental screening tool can be accessed at: https://screening.environment.gov.za/screeningtool

2. DEVELOPMENT LIMITS

a. Renewable energy generation facilities generating electricity of 20 megawatts or more

For facilities generating renewable energy of 20 megawatts (MW) or more on land zoned for agriculture, development limits apply and are provided in the Table 1 below.

Table 1: Development limits for renewable energy developments generating electricity of 20 MW or more			
Criteria (land capability evaluation value and category of erop boundary)	Allowable development footprint in hectares per MVV of installed generation capacity (with sensitivity ratings from the national web based environmental screening tool shown in brackets)		
consecut y j	Within field crop boundaries	Outside field crop boundaries	
Land capability evaluation value 11 – 15; Irrigation, horticulture/viticulture, shadenet; high value agricultural areas with a priority rating A and/or B	0 (Very High Sensitivity)	0 (Very High Sensitivity)	
Land capability evaluation value 8 – 10; all cultivated areas including sugarcane; high value agricultural areas with a priority rating C and/or D	0.20 (High Sensitivity)	0.35 (Medium Sensitivity)	
Land capability evaluation value 6 - 7;	0.25 (High Sensitivity)	2.50 (Low Sensitivity)	
Land capability evaluation value 1 - 5;	0.30 (High Sensitivity)	2.50 (Low Sensitivity)	

¹ Refer to the land capability metadata sheet available on the national web based environmental screening tool.

The development limits are based on the pre-assessment work undertaken through the Strategic Environmental Assessment for Wind and Solar Photovoltaic Energy in South Africa, 2015, for the effective and efficient roll-out of large scale wind and solar development in South Africa. The pre-assessment was undertaken in specific areas referred to as the Renewable Energy Development Zones (REDZs) as published under Government Notice No. 114, Gazette No. 41445 on 16 February 2018 and extrapolated to cover the entire country. The sensitivities were refined through further public consultation and stakeholder interaction and have been captured in the national web based environmental screening tool.

Allowable development limits refer to the area of a particular land capability that can be directly impacted (i.e. taken up by the physical footprint) by a renewable energy development. Footprint in this context is the area that is directly occupied by all infrastructure, including roads, hard standing areas, buildings, substations, etc. that is associated with the renewable energy generation facility during its operational phase, and that result in the exclusion of that land from potential cultivation or grazing. It excludes all areas that were already occupied by roads and other infrastructure prior to the establishment of the renewable energy facility, but includes the surface area required for expanding existing infrastructure (e.g. widening existing roads). It excludes the corridor underneath overhead power lines, but includes the pylon footprints. It therefore represents the total land that is actually excluded from agricultural use as a result of the renewable energy facility.

The Strategic Environmental Assessment for Wind and Solar Photovoltaic Energy in South Africa, 2015 can be accessed at:

https://redzs.csir.co.za/?page_id=611 and https://egis.environment.gov.za/redz,

3. REQUIREMENTS FOR THE INITIAL SITE SENSITIVITY VERIFICATION

Requirements for the assessment and reporting of impacts on agricultural resources for all activities requiring environmental authorisation are set out in Table 2 below, and correlate to the sensitivity ratings contained in the national web based environmental screening tool. Prior to beginning the assessment, the current use of the land and the potential environmental sensitivity of the site as identified by the national web based environmental screening tool must be confirmed by undertaking an Initial Site Sensitivity Verification.

- 3.1 The Initial Site Sensitivity Verification must be undertaken by an environmental assessment practitioner or a registered specialist with expertise in the relevant environmental theme being considered.
- 3.2 The Initial Site Sensitivity Verification must be undertaken through the use of:
 - (a) a desk top analysis, using satellite imagery; and
 - (b) a preliminary on-site inspection to identify if there are any discrepancies with the current use of land and environmental status quo versus the environmental sensitivity as identified on the national web based environmental screening tool, such as new developments, infrastructure, indigenous/pristine vegetation, etc.
- 3.3 The outcome of the Initial Site Sensitivity Verification must be recorded in the form of a report that-
 - (a) confirms or disputes the current use of the land and environmental sensitivity as identified by the national web based environmental screening tool;
 - (b) contains a motivation and evidence (e.g. photographs) of either the verified or different use of the land and environmental sensitivity; and
 - (c) is submitted together with the relevant reports prepared in accordance with the requirements of the Environmental Impact Assessment Regulations.

4. REQUIREMENTS FOR ENVIRONMENTAL ASSESSMENT

TABLE 2: REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS ON AGRICULTURAL RESOURCES FOR ACTIVITIES REQUIRING ENVIRONMENTAL AUTHORISATION

VERY HIGH SENSITIVITY RATING - Land capability evaluation values 11 – 15; all irrigated land; horticulture and viticulture; demarcated high value agricultural areas with a priority rating of A

These areas are potentially unsuitable for development owing to:

and/or B.

- high agricultural value and preservation importance
- high production capability
- high capital investment made
- unique agricultural land attributes.

HIGH SENSITIVITY RATING - Land capability evaluation values 8 - 10 including all cultivated areas² including sugar cane areas and demarcated high value agricultural areas with a priority rating of C and/or D.

High sensitivity areas are still preservation worthy since they include land with an agricultural production potential and suitability for specific crops.

1 General Information

- 1.1 An applicant intending to undertake an activity identified in the Scope of this Protocol on a site identified by the national web based environmental screening tool as being of "very high" or "high" sensitivity for agricultural resources must submit an Agricultural Agro-Ecosystems Assessment, unless the:
- 1.1.1 application is for a linear activity for which impacts to the agricultural resource are temporary and the land in the opinion of the soil scientist/agricultural specialist based on the mitigation and remedial measures, can be returned to the current land capability within two years of the completion of construction phase; or
- 1.1.2 impact on agricultural resources is from an electricity pylon which is selfsupporting; or
- 1.1.3 information gathered from the Initial Site Sensitivity Verification contemplated in section 3 of this Protocol or the specialist assessment differs from the designation of "very high" or "high" agricultural sensitivity from the national web based environmental screening tool and it is found to be of a "medium" or "low" sensitivity.
- 1.2 Should either paragraphs 1.1.1, 1.1.2 or 1.1.3 apply, an Agricultural Compliance Statement is to be provided. In the case of paragraph 1.1.3, an environmental assessment practitioner or a registered soil scientist/agricultural specialist, as appropriate, must append to the Agricultural Compliance Statement a motivation and evidence (e.g. photographs) of the different agricultural resource sensitivity.

2 The Agricultural Agro-Ecosystems Assessment

- 2.1 The assessment must be undertaken by a soil scientist/agricultural specialist registered with the South African Council for Natural Scientific Professions (SACNASP), on the site being submitted as the preferred development site.
- 2.2 The assessment must be undertaken based on a site inspection as well as an investigation of the current production figures, where the land is under cultivation or has been within the past 5 years, and must identify:
- 2.2.1 the extent of the impact of the proposed development on the agricultural resources;
- 2.2.2 whether or not the proposed development will have an unacceptable negative impact on the agricultural production capability of the site, and in the event

² The Field Crop boundary and Land Capability dataset has been provided by DAFF. For details of the datasets, click on the options button to the right of the Field Crop Boundary layer and Land Capability layer respectively, in the Agricultural Theme to view the metadata.

- where it does, whether such a negative impact is outweighed by the positive impact of the proposed development on agricultural resources.
- 2.3 Description of the status quo, including the following aspects which must be considered as a minimum in the baseline description of the agro-ecosystem:
- 2.3.1 The soil form/s, soil depth (effective and total soil depth), top and sub-soil clay percentage, terrain unit and slope;
- 2.3.2 Where applicable, the vegetation composition, available water sources as well as agro-climatic information:
- 2.3.3 The current productivity of the land based on production figures for all agricultural activities undertaken on the land for the past 3 years, expressed as an annual figure and broken down into production units;
- 2.3.4 The current employment figures (both permanent and casual) for the land for the past 3 years, expressed as an annual figure;
- 2.3.5 Existing impacts on the site, located on a map (e.g. erosion, alien vegetation, non-agricultural infrastructure, waste, etc.).
- 2.4 Assessment of impacts, including the following aspects which must be considered as a minimum in the predicted impact of the proposed development on the agroecosystem:
- 2.4.1 Change in productivity for all agricultural activities based on the figures of the past 3 years, expressed as an annual figure and broken down into production units:
- 2.4.2 Change in employment figures (both permanent and casual) expressed as an annual figure;
- 2.4.3 Any alternative development footprints within the preferred development site which would be of "medium" or "low" sensitivity for agricultural resources as identified by the national web based environmental screening tool and verified through the Initial Site Sensitivity Verification.
- The findings of the Agricultural Agro-Ecosystem Assessment must be written up in an Agricultural Agro-Ecosystem Report.
- 3.1 This report must contain the findings of the Agro-Ecosystem Assessment and the following information:
- 3.1.1 Details and relevant experience as well as the SACNASP registration number of the soil scientist/agricultural specialist/s preparing the assessment including a curriculum vitae;
- 3.1.2 A signed statement of independence by the specialist;
- 3.1.3 The duration, date and season of the site inspection and the relevance of the season to the outcome of the assessment;
- 3.1.4 A description of the methodology used to undertake the on-site assessment inclusive of the equipment and models used, as relevant;
- 3.1.5 A map showing the proposed development footprint (including supporting infrastructure) with a 50 m buffered development envelope, overlaid on the agricultural sensitivity map generated by the national web based environmental screening tool:
- 3.1.6 An indication of the potential losses in production and employment from the change of the agricultural land use as a result of the proposed development;
- 3.1.7 An indication of possible long term benefits that will be generated by the project in relation to the benefits of the agricultural activities on the affected land;
- 3.1.8 Additional environmental impacts expected from the proposed development based on the current status quo of the land including erosion, alien vegetation, waste, etc.;

- 3.1.9 Information on the current agricultural activities being undertaken on adjacent land parcels:
- 3.1.10 A motivation must be provided if there were development footprints identified as per paragraph 2.4.3 above that were identified as having a "low" biodiversity sensitivity and that were not considered appropriate;
- 3.1.11 Confirmation from the soil scientist/agricultural specialist that all reasonable measures have been considered in the micro-siting of the development to minimise fragmentation and disturbance of agricultural activities;
- 3.1.12 A substantiated statement from the soil scientist/agricultural specialist with regards to agricultural resources on the acceptability or not of the development and a recommendation on the approval or not of the development;
- 3.1.13 Any conditions to which the statement is subjected;
- 3.1.14 Where identified, proposed impact management outcomes or any monitoring requirements for inclusion in the EMPr; and
- 3.1.15 A description of the assumptions made and any uncertainties or gaps in knowledge or data.
- 3.2 In addition, where the activity is related to the generation of renewable energy of 20 MW or more, the report must contain:
- 3.2.1 Calculations of the total development footprint area for each land parcel as well as the total footprint area of the development (including supporting infrastructure);
- 3.2.2 Confirmation whether the development footprint is in line with the development limits set in the Table 1 above, including where applicable any deviation from the set development limits and motivation to support the deviation, including;
 - a. Where relevant, reasons why the proposed development footprint is required to exceed the limit;
 - Where relevant, reasons why this exceedance will be in the national interest:
 - c. Where relevant, reasons why there are no alternative options available including evidence in terms of alternatives assessed.
- 3.3 A map showing the renewable energy applications within a 50 km radius of the proposed development with valid Environmental Authorisations.
- The findings of the Agricultural Agro-Ecosystems Assessment must be incorporated into the Basic Assessment Report, or the Environmental Impact Assessment Report, including the mitigation and monitoring measures as identified, which are to be contained in the EMPr. A signed copy of the full Agricultural Agro-Ecosystems Assessment must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

MEDIUM SENSITIVITY RATING - Land capability evaluation values 6 – 7.

Medium sensitivity areas are likely to be very marginal arable land.

1. General Information

1.1. An applicant intending to undertake an activity identified in the Scope of this Protocol proposed on a site identified by the national web based environmental screening tool as being of "medium" or "low" sensitivity for agricultural resources or where the activity is related to the generation of renewable energy of 20 MW or more and the development footprint complies with the development limits

LOW SENSITIVITY RATING -

Land capability evaluation values 1 – 5.

Low sensitivity areas are likely to be non-arable land, and is therefore land onto which most development should be steered. identified in the Table 1 above, must submit an Agricultural Compliance Statement, unless:

- 1.1.1. The information gathered from the Initial Site Sensitivity Verification contemplated in section 3 of this Protocol differs from that identified as having a "medium" or "!ow" agricultural sensitivity by the national web based environmental screening tool and it is found to be of a "very high" or "high" sensitivity; or
- 1.1.2. Where the activity is related to the generation of renewable energy of 20 MW or more, the development footprint deviates from any of the allowable development limits contained in Table 1 above.
- 1.2. Should paragraphs 1.1.1 or 1.1.2 apply, an Agricultural Agro-Ecosystems Assessment is to be undertaken and a report prepared in accordance with the requirements of an Agro-Ecosystems Assessment.

2. Agricultural Compliance Statement

The Agricultural Compliance Statement must be prepared by a soil scientist/agricultural specialist registered with the SACNASP, on the site being submitted as the preferred development site and must indicate whether or not the proposed development will have an unacceptable negative impact on the agricultural production capability of the site.

- 3. The **Agricultural Compliance Statement** must contain, as a minimum, the following information:
- 3.1. Details and relevant expertise as well as the SACNASP registration number of the soil scientist/agricultural specialist preparing the statement including a curriculum vitae;
- 3.2. A signed statement of independence by the specialist;
- 3.3. A map showing the proposed development footprint (including supporting infrastructure) with a 50 m buffered development envelope, overlaid on the agricultural sensitivity map generated by the national web based environmental screening tool;
- 3.4. Calculations of the total development footprint area for each land parcel as well as the total footprint area of the development (including supporting infrastructure);
- 3.5. Confirmation that the development footprint is in line with the development limits set in Table 1 above.
- 3.6. Confirmation from the specialist that all reasonable measures have been taken through micro-siting to avoid or minimise fragmentation and disturbance of agricultural activities;
- 3.7. A substantiated statement from the soil scientist/agricultural specialist on the acceptability of the development and a recommendation on the approval or not of the development;
- 3.8. Any conditions to which the statement is subjected;
- 3.9. Where required, proposed impact management outcomes or any monitoring requirements for inclusion in the EMPr; and
- 3.10. A description of the assumptions made and any uncertainties or gaps in knowledge or data.
- 4. The signed Agricultural Compliance Statement must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

2. AVIFAUNA

2(a) - PROTOCOL FOR THE ASSESSMENT AND REPORTING OF ENVIRONMENTAL IMPACTS ON AVIFAUNA SPECIES BY ONSHORE WIND ENERGY GENERATION FACILITIES WHERE THE ELECTRICITY OUTPUT IS 20 MEGAWATTS OR MORE

1. SCOPE

This Protocol provides the criteria for the assessment and reporting of impacts on avifauna species associated with the development of onshore wind energy generation facilities where the electricity output is 20 megawatts or more which require environmental authorisation. This applies within and outside of the Renewable Energy Development Zones (REDZs) as published under Government Notice No. 114, Gazette No. 41445 on 16 February 2018. The assessment requirements of this Protocol are based on national and international best practice for the avoidance and mitigation of impacts on avifauna species.

2. REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS

Requirements for the assessment and reporting of impacts on avifauna species for onshore wind energy generation facilities are set out in Table 1 below and correlate to the sensitivity ratings contained in the national web based environmental screening tool.

TABLE 1: REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS ON AVIFAUNA FOR ONSHORE WIND ENERGY GENERATION FACILITIES WHERE THE OUTPUT IS 20 MW OR MORE REQUIRING ENVIRONMENTAL AUTHORISATION

VERY HIGH SENSITIVITY
RATING – Very high
sensitivity areas are likely to
provide critical habitat for
priority bird species³
sensitive to wind energy
development⁴ and/or whose
population is reliant on highly
localized and unique
roosting, nesting and/or
foraging sites.

These areas are potentially unsuitable for development owing to there being recent confirmed evidence that the priority bird species are present.

1. General Information

- 1.1 An applicant intending to undertake an activity as identified in the Scope of this Protocol must undertake an **Avifaunal Impact Assessment** based on the potential significance of the impact that the identified activity could have on bird species.
- 1.2 An Avifaunal Impact Assessment is to be undertaken irrespective of the sensitivity rating provided by the national web based environmental screening tool, as the present level of knowledge on bird behaviour and species population precludes confident predictions on the sustainability of priority or threatened species nationally.
- 1.3 The information provided by the national web based environmental screening tool includes known nests, roosts, vulture restaurants and areas likely to support priority bird species including threatened or rare species, especially those that may be susceptible to wind energy development. Precautionary buffers to these sensitivities as well as to the specific feature have been added. The data is,

³ Priority bird species sensitive to wind energy developments include those identified by Birdlife South Africa as well as those listed on South Africa's National Red List website 42, 43 as Critical Endangered, Endangered, Vulnerable, Threatened or near Threatened according to the IUCN Red List 3.1

⁴ https://www.birdlife.org.za/conservation/terrestrial-bird-conservation/birds-and-renewable-energy/wind-farm-map

HIGH SENSITIVITY **RATING** ~ High sensitivity areas include: (i) habitat likely to be of importance to priority bird species sensitive to wind energy developments, Critically Endangered, Endangered bird species and/or Vulnerable bird species; and (ii) habitat likely to be of importance to endemic and/or restricted-range bird species that are susceptible to impacts from wind energy facilities. These areas are potentially sensitive for

MEDIUM SENSITIVITY
RATING - Medium sensitivity
areas have limited potential
for supporting priority
populations of threatened
species that are susceptible
to impacts from wind energy

development.

facilities.

LOW SENSITIVITY RATING-

Low sensitivity areas possibly do not support priority populations of threatened species that are susceptible to impacts from wind energy facilities. These areas are probably suitable for development.

however, unverified and incomplete and therefore these features and buffers are to be used only as a guide to assist focus the **Avifaunal Impact Assessment**.

- 1.4 The process for undertaking the **Avifaunal Impact Assessment** comprises three phases:
- 1.4.1 Reconnaissance Study
- 1.4.2 Pre-application Avifaunal Monitoring Plan
- 1.4.3 Avifaunal Impact Assessment and report.
- 1.5 All tasks of the Avifaunal Impact Assessment must be undertaken by a SACNASP registered avifauna specialist.
- 1.6 All tasks are to be undertaken on the site being submitted as the preferred development site and at a control site located in accordance to the Birdlife South Africa (BLSA)/Endangered Wildlife Trust (EWT) Bird and Wind-Energy Best-Practice Guideline⁵, and must identify:
- 1.6.1 the extent of impact of the facility on priority bird species;
- 1.6.2 whether the proposed development will have an unacceptable negative impact on priority or threatened bird species.
- 1.7 The Avifaunal Impact Assessment must be undertaken based on the results of a site specific Pre-Application Avifaunal Monitoring Plan that is informed by a Reconnaissance Study, as well as data collected over four seasons (i.e. summer, autumn, winter and spring) on the proposed development site and the control site.

2 Reconnaissance Study

- 2.1 The **Reconnaissance Study** is to be based on a desktop study of relevant information as well as a 2 to 4 day on-site inspection of both sites;
- 2.2 The occurrence of target species is to be identified;
- 2.3 The study must define the study area (avifaunal impact zone); and
- 2.4 The study is to produce a **site specific Pre-Application Avifaunal Monitoring Plan.**

3 Pre-application Avifaunal Monitoring Plan

- 3.1 The plan as a minimum must include:
- 3.1.1 The study area and its characteristics which must be mapped including the extent, habitat, special features including topographical and water features, quarries, drainage lines, breeding sites, existing land uses, existing infrastructure such as power lines and roads, and existing wind energy facilities within 10 km of the proposed development site;
- 3.1.2 Target avifaunal species that are likely to occur on the proposed development site and for which monitoring is required;
- 3.1.3 Pre-application monitoring requirements for both the development site as well as the control site, that must include the following:
 - a. the monitoring intervals including the number and duration of monitoring events which must be based on the Birdlife South Africa Bird and Wind-Energy Best-Practice Guideline or a motivation provided for the deviation;
 - b. the location of monitoring points;
 - c. aspects to be monitored (for example, bird abundance and flight activity, presence of target species, proportion of flying time each target species

⁶ The Best Practice Guidelines for assessing and monitoring the impact of wind energy facilities on birds in Southern Africa is available from: https://www.birdlife.org.za/documents/avian-wind-farm-sensitivity-map/804-birds-and-wind-bestpractice-guidelines-2015-final

⁶ It is advisable to discuss the content of the plan with Birdlife South Africa before its implementation.

- spends at turbine rotor height, preferred flight paths, risk of identified target species to collision, areas for specific monitoring if any, etc.);
- d. equipment to be used;
- e. monitoring methodology (for the abundance/activity monitoring and for direct observation/vantage point surveys, the Birdlife South Africa Bird and Wind-Energy Best-Practice Guideline must be followed or a motivation provided for the deviation);
- f. numbers of observers to be used;
- g. data to be captured including a pro-forma data capturing template.
- 3.2 Implementation of site specific Pre-Application Avifaunal Monitoring Plan
- 3.2.1 The site specific Pre-Application Avifaunal Monitoring Plan is to be carried out according to its requirements for a period of not less than four seasons.
- 3.2.2 Data on pre-application monitoring must be captured on the national bird monitoring data base accessed at https://www.environment.gov.za/birddatabase

4. Avifaunal Impact Assessment

Based on the outcome of the Reconnaissance Study and the findings of the Pre-Application Avifaunal Monitoring, an **Avifaunal Impact Assessment** must be undertaken. The assessment as a minimum must consider the following aspects:

- 4.1 Discussion on bird abundance and movement within the site;
- 4.2 Discussion on presence of target/threatened species and their occurrence on the site at heights which could pose risks to collision;
- 4.3 Assessment of risk of identified target species to collision including the expected fatality rates based on a suitable model commonly used for risk determination, per species and for the site;
- 4.4 Identification and mapping where relevant, of any migratory or preferential bird routes/corridors;
- 4.5 Where relevant, discussion on the risk of displacement;
- 4.6 Where relevant, areas identified within the site as having a very high sensitivity for bird collision or displacement and in which the development of turbines should be avoided, with these areas to be mapped;
- 4.7 In areas where other wind farms have been identified within a 10 km radius, a cumulative impact assessment must be undertaken which includes:
- 4.7.1 the fatality rate at the adjacent wind farms;
- 4.7.2 the possible additional fatalities from the proposed wind farm development for target species as well as general avifaunal species;
- 4.7.3 a discussion on the possible cumulative impact of the facility on regional populations of targeted species;
- 4.8 The plan for post construction monitoring (on both the proposed development site as well as the control site) and reporting which must include:
- 4.8.1 timeframes and intervals for monitoring;
- 4.8.2 number of turbines to be monitored, including any specific area for monitoring;
- 4.8.3 methodology for searcher efficiency and scavenger removal;
- 4.8.4 method for monitoring, i.e. transects or radial as well as extent of monitoring area;
- 4.8.5 results of monitoring compared against expected fatality rates (per target species as well as general species);
- 4.8.6 reporting requirements, including organisations for submission of reports;
- 4.8.7 years and intervals for monitoring to occur; and

- 4.8.8 all methods used to estimate bird numbers and movements during reconnaissance and pre-application monitoring, which should be applied in exactly the same order to ensure the comparability of these two data sets.
- 5. The findings of the Avifaunal Impact Assessment must be written up in an Avifaunal Impact Assessment Report which must contain, as a minimum, the following information:
- 5.1 The SACNASP registration number of the avifaunal specialist/s preparing the assessment and their curriculum vitae:
- 5.2 A signed statement of independence by the specialist;
- 5.3 A description of the study area including a map of all the aspects identified in the duration, dates and seasons of the site investigation and the relevance of the season to the outcome of the assessment:
- 5.4 A description of the methodology used to undertake the site specific preapplication avifaunal monitoring program inclusive of the equipment used;
- 5.5 A map showing the GPS coordinates for each of the monitoring points for both the development site as well as the control site;
- 5.6 The monitoring intervals for both sites;
- 5.7 Where relevant, a map showing the areas to be avoided:
- 5.8 Fatality predication for target species and general species on the sites;
- 5.9 A map showing the approved renewable energy applications within a 10 km radius of the proposed project;
- 5.10Where relevant, the outcomes of the cumulative impact assessment;
- 5.11A discussion based on the pre-application monitoring of the expected impact of the proposed development on avifaunal species;
- 5.12A substantiated statement from the registered avifauna specialist, indicating the acceptability of the development and a recommendation on the approval or not of the development;
- 5.13Any conditions to which the statement is subjected;
- 5.14A detailed post construction monitoring programme:
- 5.15The outcomes of the post-construction monitoring, including data and specialists reports, must be uploaded onto the national bird monitoring database, to be accessed at https://www.environment.gov.za/birddatabase;
- 5.16Where required, proposed mitigation measures or any monitoring requirements for inclusion in the EMPr; and
- 5.17A description of the assumptions made and any uncertainties or gaps in knowledge or data.
- 6. The findings of the Avifaunal Impact Assessment must be incorporated into the Basic Assessment Report or the Environmental Impact Assessment Report, including the mitigation and monitoring measures as identified, which must be incorporated into the EMPr. A signed copy of the Avifaunal Impact Assessment must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

3. BIODIVERSITY

3(a) - PROTOCOL FOR THE ASSESSMENT AND REPORTING OF ENVIRONMENTAL IMPACTS ON TERRESTRIAL BIODIVERSITY

1. SCOPE

This Protocol provides the criteria for the assessment and reporting of impacts on terrestrial biodiversity for activities requiring environmental authorisation. The assessment requirements of this Protocol are associated with a level of environmental sensitivity determined by the national web based environmental screening tool. For terrestrial biodiversity the requirements are for landscapes or sites which support various levels of biodiversity. The relevant terrestrial biodiversity data in the national web based environmental screening tool has been provided by the South African National Biodiversity Institute⁷. If any part of the proposed development falls within an area of "very high" sensitivity, the requirements prescribed for such sensitivity apply.

The national web based environmental screening tool can be accessed at: https://screening.environment.gov.za/screeningtool

2. REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS

Requirements for the assessment and reporting of impacts of development on terrestrial biodiversity are set out in Table 1 below, and correlate to the sensitivity ratings contained in the national web based environmental screening tool. Prior to beginning the assessment, the current use of the land and the potential environmental sensitivity of the site as identified by the national web based environmental screening tool must be confirmed by undertaking an Initial Site Sensitivity Verification.

- 2.1 The Initial Site Sensitivity Verification must be undertaken by an Environmental Assessment Practitioner or a registered specialist with expertise in the relevant environmental theme being considered.
- 2.2 The Initial Site Sensitivity Verification must be undertaken through the use of:
 - (a) a desk top analysis, using satellite imagery; and
 - (b) a preliminary on-site inspection to identify if there are any discrepancies with the current use of land and environmental status quo versus the environmental sensitivity as identified on the national web based environmental screening tool, such as new developments, infrastructure, indigenous/pristine vegetation, etc.
- 2.3 The outcome of the Initial Site Sensitivity Verification must be recorded in the form of a report that-
 - (a) confirms or disputes the current use of the land and environmental sensitivity as identified by the national web based environmental screening tool;
 - (b) contains a motivation and evidence (e.g. photographs) of either the verified or different use of the land and environmental sensitivity; and
 - (c) is submitted together with the relevant assessment report prepared in accordance with the requirements of the Environmental Impact Assessment Regulations.

⁷ The biodiversity dataset has been provided by the South African Biodiversity Institute. For details of the dataset, click on the options button to the right of the various biodiversity layers within the national web based environmental screening tool, in the Terrestrial Biodiversity theme, to view the metadata.

3. REQUIREMENTS FOR ENVIRONMENTAL ASSESSMENT

TABLE 1: REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS ON TERRESTRIAL BIODIVERSITY FOR ACTIVITIES REQUIRING ENVIRONMENTAL AUTHORISATION

VERY HIGH SENSITIVITY RATING - for terrestrial biodiversity features

1 General information

- 1.1 An applicant intending to undertake an activity identified in the Scope of this Protocol, on a site identified as being of "very high sensitivity" for terrestrial biodiversity on the national web based environmental screening tool must submit a Terrestrial Biodiversity Impact Assessment.
- 1.2 However, where the information gathered from the Initial Site Sensitivity Verification identified in section 2.1 of this Protocol or the specialist assessment differs from the designation of "very high" terrestrial biodiversity sensitivity from the national web based environmental screening tool and it is found to be of a "low" sensitivity, then a terrestrial biodiversity impact assessment is not required.
- 1.3 Should paragraph 1.2 apply, a Terrestrial Biodiversity Compliance Statement is to be provided. An Environmental Assessment Practitioner or a suitably qualified and SACNASP registered specialist, must append to the Terrestrial Biodiversity Compliance Statement a motivation and evidence (e.g. photographs) of the changed Terrestrial Biodiversity sensitivity.

2 The Terrestrial Biodiversity Impact Assessment

- 2.1 The assessment must be undertaken by a SACNASP registered specialist, on the preferred development site.
- 2.2 Description of the preferred site the following aspects, as a minimum, must be considered in the baseline description:
- 2.2.1 A description of the ecological drivers/processes of the system and how the proposed development will impact these;
- 2.2.2 Ecological functioning and ecological processes (e.g. fire, migration, pollination, etc.) that operate within the proposed development site;
- 2.2.3 The ecological corridors that the development would impede including migration and movement of flora and fauna;
- 2.2.4 The description of any significant landscape features (including rare or important flora/faunal associations, presence of Strategic Water Source Areas (SWSAs) or Freshwater Ecosystem Priority Areas (FEPA) sub catchments;
- 2.2.5 A description of terrestrial biodiversity and ecosystems on the proposed development site, including
 - a) Main vegetation types;
 - b) Threatened ecosystems, including Listed Ecosystems as well as locally important habitat types identified;
 - Ecological connectivity, habitat fragmentation, ecological processes and finescale habitats: and
 - d) Species, distribution, important habitats (e.g. feeding grounds, nesting sites, etc.) and movement patterns identified.
- 2.3 Identify any alternative development footprints within the preferred development site which would be of a "low" sensitivity as identified by the national web based environmental screening tool and verified through the Initial Site Sensitivity Verification;
- 2.4 The Terrestrial Biodiversity Impact Assessment must be based on the results of a site inspection undertaken on the preferred development site and must identify:
- 2.5 Terrestrial Critical Biodiversity Areas (CBAs), including:
- 2.5.1 The reasons why an area has been identified as a CBA;

- 2.5.2 An indication of whether or not the development is consistent with maintaining the CBA in a natural or near natural state or in achieving the goal of rehabilitation;
- 2.5.3 The impact on species composition and structure of vegetation with an indication of the extent of clearing activities;
- 2.5.4 The impact on ecosystem threat status;
- 2.5.5 The impact on explicit subtypes in the vegetation;
- 2.5.6 The impact on overall species and ecosystem diversity of the site; and
- 2.5.7 The impact on populations of species of special concern in the CBA.
- 2.6 Terrestrial Ecological Support Areas, including;
- 2.6.1 The impact on the ecological processes that operate within or across the site;
- 2.6.2 The extent the development will impact on the functionality of the ESA; and
- 2.6.3 Loss of ecological connectivity (on site, and in relation to the broader landscape) due to the degradation and severing of ecological corridors or introducing barriers that impede migration and movement of flora and fauna.
- 2.7 Protected Areas as defined by the National Environmental Management: Protected Areas Act, 2004 including:
- 2.7.1 An opinion on whether the proposed development aligns with the objectives/purpose of the Protected Area and the zoning as per the Protected Area Management Plan;
- 2.8 Priority Areas for Protected Area Expansion, including:
- 2.8.1 The way in which in which the development will compromise or contribute to the expansion of the protected area network.
- 2.9 Strategic Water Source Areas (SWSA) including:
- 2.9.1 The impact(s) on the terrestrial habitat of a Strategic Water Source Area, and
- 2.9.2 The impacts of the development on the SWSA water quality and quantity (e.g. describing potential increased runoff leading to increased sediment load in water courses).
- 2.10Freshwater Ecosystem Priority Area (FEPA) sub catchments, including:
- 2.10.1 The impacts of the development on habitat condition and/or species in the FEPA sub catchment.
- 2.11 Indigenous Forests, including:
- 2.11.1 Impact on the ecological integrity of the forest;
- 2.11.2 Extent of natural or near natural indigenous forest area lost.
- 3 The findings of the Terrestrial Biodiversity Impact Assessment must be written up in a Terrestrial Biodiversity Impact Assessment Report.

This report must include as a minimum the following information:

- 3.1 Contact details and curriculum vitae of the specialist including SACNASP registration number and field of expertise and their curriculum vitae;
- 3.2 A signed statement of independence by the specialist;
- 3.3 Duration, date and season of the site inspection and the relevance of the season to the outcome of the assessment;
- 3.4 A description of the methodology used to undertake the impact assessment and site inspection, including equipment and modelling used where relevant;
- 3.5 A description of the assumptions made and any uncertainties or gaps in knowledge or data as well as a statement of the timing and intensity of site inspection observations;
- 3.6 Areas not suitable for development, to be avoided during construction and operation (where relevant);
- 3.7 Additional environmental impacts expected from the proposed development based on those already evident on the site and a discussion on the cumulative impacts;
- 3.8 Impact management actions and impact management outcomes proposed by the specialist for inclusion in the EMPr; and
- 3.9 A motivation where the development footprint identified as per section 2.3 in this Table were not considered stating reasons why these were not being not considered.

- 3.10A reasoned opinion, based on the findings of the specialist assessment, regarding the acceptability or not of the development and if the development should receive approval or not, and any conditions to which the statement is subjected.
- The findings of the Terrestrial Biodiversity Impact Assessment must be incorporated into the Basic Assessment Report or the Environmental Impact Assessment Report, including the mitigation and monitoring measures as identified, which must be incorporated into the EMPr. A signed copy of the Assessment must be appended to the Basic Assessment Report or Environmental Assessment Report.

1 General Information

- 1.1 An applicant, intending to undertake an activity identified in the Scope of this Protocol, on a site identified as being of "low sensitivity" for terrestrial biodiversity on the national web based environmental screening tool must submit a Terrestrial Biodiversity Compliance Statement to the competent authority, unless:
- 1.1.1 The information gathered from the Initial Site Sensitivity Verification differs from that identified as having a "low" terrestrial biodiversity sensitivity by the national web based environmental screening tool and it is found to be of a "very high" sensitivity.
- 1.2 Should paragraph 1.1.1 apply, a Terrestrial Biodiversity Impact Assessment is to be undertaken and a report should be prepared in accordance with the requirements of a Terrestrial Biodiversity Impact Assessment.
- 2 Terrestrial Biodiversity Compliance Statement
- 2.1 The Terrestrial Biodiversity Compliance Statement, must be prepared by a suitably qualified specialist in the field of ecological sciences, on the site being submitted as the preferred development site and must verify:

LOW SENSITIVITY RATING – for terrestrial biodiversity features

- 2.1.1 That the site is of "low" sensitivity for terrestrial biodiversity; and
- 2.1.2 Whether or not the proposed development will have any impact on the biodiversity feature.
- 3 The Terrestrial Biodiversity Compliance Statement, must contain, as a minimum, the following information:
- 3.1 Contact details and curriculum vitae of the specialist including SACNASP registration number and field of expertise;
- 3.2 A signed statement of independence by the specialist;
- 3.3 Baseline profile description of biodiversity and ecosystems, including the duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment;
- 3.4 Methodology used to verify the sensitivities of the terrestrial biodiversity on the national web based environmental screening;
- 3.5 Methodology used to undertake the site survey and prepare the Compliance Statement, including equipment and modelling used where relevant;
- 3.6 Where required, proposed impact management outcomes or any monitoring requirements for inclusion in the EMPr;
- 3.7 A description of the assumptions made and any uncertainties or gaps in knowledge or data as well as a statement of the timing and intensity of site inspection observations; and
- 3.8 Any conditions to which the statement is subjected.

A signed copy of the full Terrestrial Biodiversity Compliance Statement must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

3. BIODIVERSITY

3(b) - PROTOCOL FOR THE ASSESSMENT AND REPORTING OF ENVIRONMENTAL IMPACTS ON AQUATIC BIODIVERSITY

1. SCOPE

This protocol provides the criteria for the assessment and reporting of impacts on aquatic biodiversity for activities requiring environmental authorisation. The assessment requirements of this protocol are associated with a level of environmental sensitivity determined by the national web based environmental screening tool. For aquatic biodiversity the requirements are for landscapes or sites which support various levels of biodiversity. The relevant aquatic biodiversity data in the national web based environmental screening tool has been provided by the South African National Biodiversity Institute⁸. If any part of the proposed development falls within an area of "very high" sensitivity, the requirements prescribed for such sensitivity apply.

The national web based environmental screening tool can be accessed at: https://screening.environment.gov.za/screeningtool

2. REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS

Requirements for the assessment and reporting of impacts of development on aquatic biodiversity are set out in Table 1 below, and correlate to the sensitivity ratings contained in the national web based environmental screening tool. Prior to beginning the assessment, the current land use and the potential environmental sensitivity of the site as identified by the national web based environmental screening tool must be confirmed by undertaking an Initial Site Sensitivity Verification.

- 2.1 The Initial Site Sensitivity Verification must be undertaken by an environmental assessment practitioner or a registered specialist with expertise in the relevant environmental theme being considered.
- 2.2 The Initial Site Sensitivity Verification must be undertaken through the use of:
 - (a) a desk top analysis, using satellite imagery; and
 - (b) a preliminary on-site inspection to identify if there are any discrepancies with the current use of land and environmental status quo versus the environmental sensitivity as identified on the national web based environmental screening tool, such as new developments, infrastructure, indigenous/pristine vegetation, etc.
- 2.3 The outcome of the Initial Site Sensitivity Verification must be recorded in the form of a report that-
 - (a) confirms or disputes the current use of the land and environmental sensitivity as identified by the national web based environmental screening tool;
 - (b) contains a motivation and evidence (e.g. photographs) of either the verified or different use of the land and environmental sensitivity; and
 - (c) is submitted together with the relevant assessment report prepared in accordance with the requirements of the Environmental Impact Assessment Regulations.

⁸ The biodiversity dataset has been provided by the South African Biodiversity Institute. For details of the dataset, click on the options button to the right of the various biodiversity layers within the national web based environmental screening tool, in the Aquatic Biodiversity theme to view the metadata.

3. REQUIREMENTS FOR ENVIRONMENTAL ASSESSMENT

TABLE 1: REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS ON AQUATIC BIODIVERSITY FOR ACTIVITIES REQUIRING ENVIRONMENTAL AUTHORISATION

1 General Information

- 1.1 An applicant intending to undertake an activity identified in the Scope of this Protocol on a site identified as being of "very high sensitivity" for aquatic biodiversity on the national web based environmental screening tool must submit an Aquatic Biodiversity Impact Assessment.
- 1.2 However, where the information gathered from the Initial Site Sensitivity Verification identified in section 2.1 of this Protocol or the specialist assessment differs from the designation of "very high" aquatic biodiversity sensitivity from the national web based environmental screening tool, and it is found to be of a "low" sensitivity, an aquatic biodiversity impact assessment is not required.
- 1.3 Should paragraph 1.2 apply, an Aquatic Biodiversity Compliance Statement is to be provided. An Environmental Assessment Practitioner or a suitably qualified and SACNASP registered specialist, as appropriate, must append to the Aquatic Biodiversity Compliance Statement a motivation and evidence (e.g. photographs) of the changed Aquatic Biodiversity sensitivity.

SENSITIVITY

For aquatic biodiversity features

HIGH

VERY

RATING -

2 The Aquatic Biodiversity Impact Assessment

- 2.1 The assessment must be undertaken by a suitably qualified and SACNASP registered specialist, within the preferred development site and on the preferred development footprint.
- 2.2 Description of the preferred development site The following aspects as a minimum must be considered in the baseline description:
- 2.2.1 A description of the aquatic biodiversity and ecosystems on the site, including:
 - a. Aquatic ecosystem types;
 - b. Presence of aquatic species and composition of aquatic species communities, their habitat, distribution and movement patterns;
- 2.2.2 Threat status, according to the national web based environmental screening tool of the species and ecosystems, including Listed Ecosystems, as well as locally important habitat types identified;
- 2.2.3 National and Provincial priority status of the aquatic ecosystem (i.e. is this a wetland or river Freshwater Ecosystem Priority Area (FEPA), a FEPA sub catchment, a Strategic Water Source Area (SWSA), a priority estuary, whether or not they are free-flowing rivers, wetland clusters, etc., a CBA or an ESA; including for all a description of the criteria for their given status; and

⁹ Development footprint means the area within the site on which the development will take place and includes all ancillary developments for example roads and power lines which require vegetation clearance or which will be disturbed and for which the application has been submitted.

- 2.2.4 A description of the Ecological Importance and Sensitivity of the aquatic ecosystem including:
 - a. The description (spatially, if possible) of the ecosystem processes that operate in relation to the aquatic ecosystems on and immediately adjacent to the site (e.g. movement of surface and subsurface water, recharge, discharge, sediment transport, etc.);
 - b. The historic ecological condition (reference) as well as Present Ecological State (PES) of rivers (in-stream, riparian and floodplain habitat), wetlands and/or estuaries in terms of possible changes to the channel, flow regime (surface and groundwater).
- 2.3 Identify any alternative development footprints within the preferred development site which would be of a "low" sensitivity as identified by the national web based environmental screening tool and verified through the Initial Site Sensitivity Verification;
- 2.4 Assessment of impacts a detailed assessment of the potential impact(s) of the proposed development on the following very high sensitivity areas/ features:
- 2.4.1 Is the development consistent with maintaining the priority aquatic ecosystem in its current state and according to the stated goal?
- 2.4.2 Is the development consistent with maintaining the Resource Quality Objectives for the aquatic ecosystems present?
- 2.4.3 How will the development impact on fixed and dynamic ecological processes that operate within or across the site, including:
 - Impacts on hydrological functioning at a landscape level and across the site which can arise from changes to flood regimes (e.g. suppression of floods, loss of flood attenuation capacity, unseasonal flooding or destruction of floodplain processes); and
 - Change in the sediment regime (e.g. sand movement, meandering river mouth/estuary, changing flooding or sedimentation patterns) of the aquatic ecosystem and its sub-catchment;
 - c. The extent of the modification in relation to the overall aquatic ecosystem (i.e. at the source, upstream or downstream portion, in the temporary / seasonal / permanent zone of a wetland, in the riparian zone or within the channel of a watercourse, etc.).
 - d. Assessment of the risks associated with water use/s and related activities.
- 2.4.4 How will the development impact on the functionality of the aquatic feature, including:
 - a. Base flows (e.g. too little/too much water in terms of characteristics and requirements of system);
 - Quantity of water including change in the hydrological regime or hydroperiod of the aquatic ecosystem (e.g. seasonal to temporary or permanent; impact of overabstraction or instream or off-stream impoundment of a wetland or river)
 - Change in the hydrogeomorphic typing of the aquatic ecosystem (e.g. change from an unchannelled valley-bottom wetland to a channelled valley-bottom wetland).
 - d. Quality of water (e.g. due to increased sediment load, contamination by chemical and/or organic effluent, and/or eutrophication)
 - e. Fragmentation (e.g. road or pipeline crossing a wetland) and loss of ecological connectivity (lateral and longitudinal).

- f. The loss or degradation of all or part of any unique or important features (e.g. waterfalls, springs, oxbow lakes, meandering or braided channels, peat soils, etc.) associated with or within the aquatic ecosystem.
- 2.4.5 How will the development impact on the functionality of the aquatic feature, including:
 - water including change in the hydrological regime or hydroperiod of the aquatic ecosystem (e.g. seasonal to temporary or permanent; impact of over-abstraction or instream or off-stream impoundment of a wetland or river)
 - Change in the hydrogeomorphic typing of the aquatic ecosystem (e.g. change from an unchannelled valley-bottom wetland to a channelled valley-bottom wetland).
 - c. Quality of water (e.g. due to increased sediment load, contamination by chemical and/or organic effluent, and/or eutrophication)
 - Fragmentation (e.g. road or pipeline crossing a wetland) and loss of ecological connectivity (lateral and longitudinal).
 - e. The loss or degradation of all or part of any unique or important features (e.g. waterfalls, springs, oxbow lakes, meandering or braided channels, peat soils, etc.) associated with or within the aquatic ecosystem.
- 2.4.6 How will the development impact on key ecosystem regulating and supporting services especially:
 - a. Flood attenuation;
 - b. Streamflow regulation;
 - c. Sediment trapping:
 - d. Phosphate assimilation;
 - e. Nitrate assimilation
 - f. Toxicant assimilation;
 - g. Erosion control; and
 - h. Carbon storage.
- 2.4.7 How will the development impact community composition (numbers and density of species) and integrity (condition, viability, predator-prey ratios, dispersal rates, etc.) of the faunal and vegetation communities inhabiting the site?
- 2.4.8 In addition to the above, where applicable, impacts to the frequency of estuary mouth closure should be considered, in relation to:
 - a. Size of the estuary;
 - b. Availability of sediment;
 - c. Wave action in the mouth;
 - d. Protection of the mouth;
 - e. Beach slope;
 - f. Volume of mean annual runoff (MAR);
 - g. Extent of saline intrusion (especially relevant to permanently open systems).
- 2.4.9 A motivation must be provided if there were development footprints identified as per paragraph 2.3 above that were identified as having a "low" biodiversity sensitivity and were not considered appropriate.
- 3 The findings of the **Aquatic Biodiversity Impact Assessment** must be written up in an Aquatic Biodiversity Impact Assessment Report.

This report must contain as a minimum the following information:

3.1 Contact details and curriculum vitae of the specialist including SACNASP registration number and field of expertise and their curriculum vitae; 3.2 A signed statement of independence by the specialist; 3.3 The duration, date and season of the site inspection and the relevance of the season to the outcome of the assessment: 3.4 The methodology used to undertake the impact assessment and site inspection, including equipment and modelling used, where relevant; 3.5 A description of the assumptions made and any uncertainties or gaps in knowledge or data as well as a statement of the timing and intensity of site inspection observations; 3.6 Areas not suitable for development, to be avoided during construction and operation (where relevant); 3.7 Additional environmental impacts expected from the proposed development based on those already evident on the site and a discussion on the cumulative impacts; 3.8 A suitable construction and operational buffer for the aquatic ecosystem, using the accepted protocol; 3.9 Impact management actions and impact management outcomes proposed by the specialist for inclusion in the EMPr; 3.10A motivation where the development footprint identified as per 2.3 were not considered stating reasons why these were not being not considered; and 3.11A reasoned opinion, based on the finding of the specialist assessment, regarding the acceptability or not, of the development and if the development should receive approval, and any conditions to which the statement is subjected. 4 The findings of the Aquatic Biodiversity Impact Assessment must be incorporated into the Basic Assessment Report or the Environmental Impact Assessment Report, including the mitigation and monitoring measures as identified, which must be incorporated into the EMPr. A signed copy of the Assessment must be appended to the Basic Assessment Report or Environmental Impact Assessment Report. General Information 1.1 An applicant, intending to undertake an activity identified in the Scope of this Protocol. on a site identified as being of "low sensitivity" for aquatic biodiversity on the national web based environmental screening tool must submit an Aquatic Biodiversity Compliance Statement to the competent authority. LOW SENSITIVITY RATING -For aquatic biodiversity features 1.2 Where the information gathered from the Initial Site Sensitivity Verification differs from that identified as having a "low" aquatic biodiversity sensitivity by the national web based environmental screening tool and it is found to be of a "very high" sensitivity an Aquatic Biodiversity Compliance Statement is not required.

Biodiversity Impact Assessment.

1.3 Should paragraph 1.2 apply, an **Aquatic Biodiversity Impact Assessment** is to be undertaken and a report prepared in accordance with the requirements of an Aquatic

- 2 Aquatic Biodiversity Compliance Statement
- 2.1 The **Aquatic Biodiversity Compliance Statement**, must be prepared by a suitably qualified specialist in the field of aquatic sciences and must verify:
- 2.1.1 That the site is of "low" sensitivity for aquatic biodiversity; and
- 2.1.2 Whether or not the proposed development will have an impact on the aquatic features.
- 3 The Aquatic Biodiversity Compliance Statement, must contain, as a minimum, the following information:
- 3.1 Contact details and curriculum vitae of the specialist including SACNASP registration number and field of expertise;
- 3.2 A signed statement of independence by the specialist:
- 3.3 Baseline profile description of biodiversity and ecosystems, including the duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment;
- 3.4 Methodology used to verify the sensitivities of the aquatic biodiversity features on the national web based environmental screening tool;
- 3.5 Methodology used to undertake the initial Site Sensitivity Verification and preparation of the Compliance Statement, including equipment and modelling used, where relevant;
- 3.6 Where required, proposed impact management outcomes or any monitoring requirements for inclusion in the EMPr;
- 3.7 A description of the assumptions made and any uncertainties or gaps in knowledge or data as well as a statement of the timing and intensity of site inspection observations; and
- 3.8 Any conditions to which the statement is subjected.
- 4 A signed copy of the full Aquatic Biodiversity Compliance Statement must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

4. NOISE

4(a) - PROTOCOL FOR THE ASSESSMENT AND REPORTING OF NOISE IMPACTS

1. SCOPE

This protocol provides the criteria for the assessment and reporting of noise impacts for activities requiring environmental authorisation. These requirements are set out in the Table 1 below, which shows how these requirements correlate with the sensitivity ratings as contained in the national web based environmental screening tool. If any part of the proposed development falls within an area of "very high" sensitivity, the requirements prescribed for such sensitivity apply.

The national web based environmental screening tool can be accessed at: https://screening.environment.gov.za/screeningtool

2. REQUIREMENTS FOR THE INITIAL SITE SENSITIVITY VERIFICATION

Requirements for the assessment and reporting of noise impacts are set out in the Table 1 below and correlate with the sensitivity ratings contained in the national web based environmental screening tool. Prior to the assessment, the current use of the land and the potential environmental sensitivity of the site as identified by the national web based environmental screening tool must be confirmed by undertaking an Initial Site Sensitivity Verification.

- 2.1 The Initial Site Sensitivity Verification must be undertaken by an environmental assessment practitioner or a registered specialist with expertise in the relevant environmental theme being considered.
- 2.2 The Initial Site Sensitivity Verification must be undertaken through the use of:
 - (a) a desk top analysis, using satellite imagery; and
 - (b) a preliminary on-site inspection to identify if there are any discrepancies with the current use of land and environmental status quo versus the environmental sensitivity as identified on the national web based environmental screening tool, such as new developments, infrastructure, indigenous/pristine vegetation, etc.
- 2.3 The outcome of the Initial Site Sensitivity Verification must be recorded in the form of a report that-
 - (a) confirms or disputes the current use of the land and environmental sensitivity as identified by the national web based environmental screening tool;
 - (b) contains a motivation and evidence (e.g. photographs) of either the verified or different use of the land and environmental sensitivity; and
 - (c) is submitted together with the relevant assessment report prepared in accordance with the requirements of the Environmental Impact Assessment Regulations.

REQUIREMENTS FOR ENVIRONMENTAL ASSESSMENT

TABLE 1: REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF NOISE IMPACTS FOR ACTIVITIES REQUIRING ENVIRONMENTAL AUTHORISATION

1. General information

VERY HIGH SENSITIVITY RATING - High likelihood of a high negative noise impact (10 dBA or more above ambient)

- 1.1 An applicant intending to undertake an activity identified in the Scope of this Protocol for a site identified by the national web based environmental screening tool as being of "very high", "high" or "medium" sensitivity for noise must submit a Noise Assessment.
- 1.2 Where the information gathered from the Initial Site Sensitivity Verification contemplated in section 2.1 of this Protocol or the specialist assessment differs from the designation of "very high", "high" or "medium" sensitivity from the national web based environmental screening tool and it is found to be of a "low" sensitivity a Noise Assessment is not required.
- 1.3 Should 1.2 apply, a Noise Compliance Statement is to be provided. An Environmental Assessment Practitioner or a noise specialist, must append to the Noise Compliance Statement a motivation and evidence (e.g. photographs of no buildings near the proposed development footprint) of the different noise sensitivity.

2. The Noise Assessment

HIGH SENSITIVITY RATING - High likelihood of

- 2.1. The assessment must be undertaken by a suitably qualified noise specialist on the site being submitted as the preferred development site.
- 2.2 The assessment must be undertaken based on a site inspection as well as applying the noise standards and methodologies stipulated in SANS 10103:2008 and SANS 10328:2008 for residential and non-residential areas as defined in these standards.
- 2.3 A baseline description must be provided of the potential receptors and existing ambient noise levels. As a minimum, this description must include the following:
 - a. Current ambient sound levels recorded at relevant locations (e.g. receptors and proposed new noise sources) over a minimum of two nights and that provide a representative measurement of the ambient noise climate, with each sample being a minimum of ten minutes, and the approximate wind speed at the time of the measurement must be recorded.
 - b. Mapped distance of the receiver from the proposed development that is the noise source.
 - c. Calculation of noise impact from the noise source.
- 2.4 Assessment of impacts done in accordance to SANS 10103:2008 and SANS 10328:2008 including the following aspects which must be considered as a minimum in the predicted impact of the proposed development:
 - a. Projected changes in noise levels as a result of the construction, operation and decommissioning of the development to the nearest receptors using industry accepted models and forecasts.
- The findings of the **Noise Assessment** must be written up in a **Noise Report**.
- 3.1 This report must contain, as a minimum, the following information:

a medium negative noise impact (5 to 10 dBA above ambient)

MEDIUM SENSITIVITY RATING - Potential for low negative noise impact (0 to 5 dBA above ambient)

3.1.1 Details and relevant qualifications and experience of the noise specialist/s preparing the assessment including a curriculum vitae; 3.1.2 A signed statement of independence by the specialist; 3.1.3 The duration and date of the site inspection and the relevance of the season and weather conditions to the outcome of the assessment: 3.1.4 A description of the methodology used to undertake the on-site assessment inclusive of the equipment and models used, as relevant, together with results of the noise assessment: 3.1.5 A map showing the proposed development footprint (including supporting infrastructure) with a 50 m buffered development envelope; 3.1.6 Confirmation or not from the specialist that all reasonable measures have been considered in the micro-siting of the development to minimise disturbance of receptors; 3.1.7 A substantiated statement from the specialist on the acceptability of the development and a recommendation on the approval or not of the development; 3.1.8 Identify any alternative development footprints within the preferred site and where any of these alternative development footprints are located in a "low" sensitivity as identified by the national web based environmental screening tool, and motivate as to why these potential development footprints were not considered appropriate; 3.1.9 Any conditions to which the statement is subjected; Where identified, proposed impact management outcomes or any monitoring 3.1.10 requirements for inclusion in the EMPr; and 3.1.11 A description of the assumptions made and any uncertainties or gaps in knowledge or data. 4 The findings of the Noise Assessment must be incorporated into the Basic Assessment Report or the Environmental Impact Assessment Report including the mitigation and monitoring measures as identified for inclusion in the EMPr. A signed copy of the full Noise Assessment must be appended to the Basic Assessment Report or Environmental Impact Assessment Report. 1. General Information 1.1 An applicant intending to undertake an activity identified in the Scope of this Protocol proposed on a site identified by the national web based environmental screening tool as being of "low" sensitivity for Noise must submit a Noise Compliance Statement. 1.2 Where the information gathered from the Initial Site Sensitivity Verification contemplated in section 2.1 of this Protocol differs from that identified as having a LOW SENSITIVITY "low" Noise sensitivity by the national web based environmental screening tool and RATING - No significant it is found to be of a "very high", "high" or "medium" sensitivity, then a Noise noise impact expected Compliance Statement is not required. 1.3 Should paragraph 1.2 apply, a **Nolse Assessment** is to be undertaken and a report prepared in accordance with the requirements of a Noise Assessment.

2.1 The Noise Compliance Statement must be prepared by an Environmental Assessment Practitioner or a suitably qualified noise specialist, on the site being submitted as the preferred development site and the preferred development footprint and must indicate whether or not the proposed development will have an

unacceptable negative impact on the noise receptors of the site or not.

2. Noise Compliance Statement

- 2.2 Identify any alternative development footprints within the proposed development site which would be of "low" sensitivity as identified by the national web based environmental screening tool and motivate as to why these potential development footprints were not considered appropriate.
- 3. The Noise Compliance Statement must contain, as a minimum, the following information:
- 3.1 Details and relevant qualifications and expertise of the noise specialist preparing the statement including a curriculum vitae;
- 3.2 A signed statement of independence by the specialist;
- 3.3 A map showing the proposed development footprint (including supporting infrastructure) with a 50 m buffered development envelope, overlaid on the sensitivity map generated by the national web based environmental screening tool;
- 3.4 Confirmation from the specialist that all reasonable measures have been taken through micro-siting to minimize disturbance to receptors;
- 3.5 A substantiated statement from the noise specialist/environmental assessment practitioner on the acceptability of the development and a recommendation on the approval or not of the development;
- 3.6 Any conditions to which the statement is subjected;
- 3.7 Where required, proposed impact management outcomes or any monitoring requirements for inclusion in the EMPr; and
- 3.8 A description of the assumptions made and any uncertainties or gaps in knowledge or data as well as a statement of the timing and intensity of site inspection observations.
- 4. A signed copy of the **Noise Compliance Statement** must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

5. DEFENCE

5(a) - PROTOCOL FOR THE ASSESSMENT AND REPORTING OF ENVIRONMENTAL IMPACTS ON DEFENCE INSTALLATIONS

1. SCOPE

This protocol provides the criteria for the assessment and reporting of impacts on defence installations for activities requiring environmental authorisation. Requirements for the assessment and reporting of impacts on defence installations are set out in the Table 1 below, which shows how these requirements correlate with the sensitivity ratings as contained in the national web based environmental screening tool.

The national web based environmental screening tool can be accessed at: https://screening.environment.gov.za/screeningtool

2. REQUIREMENTS FOR ENVIRONMENTAL ASSESSMENT

TABLE 1: REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS ON DEFENCE INSTALLATIONS FOR ACTIVITIES REQUIRING ENVIRONMENTAL AUTHORISATION

VERY HIGH SENSITIVITY RATING - high likelihood for negative impacts on the defence installation. Indepth assessment of the potential impacts and mitigation measures are likely to be required before development can be considered in these areas.

HIGH SENSITIVITY
RATING - potential for negative impacts on the defence installation that can potentially be mitigated. Further assessment may be required to investigate potential impacts and mitigation measures.

1. General Information

1.1 An applicant intending to undertake an activity identified in the Scope of this Protocol proposed on a site identified by the national web based environmental screening tool as being of "very high", "high", "medium" or "low" sensitivity for defence must submit a Defence Compliance Statement.

2. Defence Compliance Statement

The **Defence Compliance Statement** must be prepared by an Environmental Assessment Practitioner on the site being submitted as the preferred development site and must indicate whether or not the proposed development will have an unacceptable negative impact on defence installations.

3. The **Defence Compliance Statement** must contain, as a minimum, the following information:

MEDIUM SENSITIVITY

RATING - low potential for negative impacts on the defence installation, and if there are impacts there is a high likelihood of mitigation. Further assessment of the potential impacts may not be required.

LOW SENSITIVITY RATING -

No negative impacts on the defence installation are expected in low sensitivity areas. It is unlikely for further assessment and mitigation measures to be required.

- 3.1 A comment, in writing, from the Obstacle Evaluation Committee (OEC) confirming no unacceptable impact on military areas of interest.
- 3.2 Should the comment from the OEC require further assessment, a copy of the assessment report and mitigation measures is to be attached with the Compliance Statement as part of the Basic Assessment Report or Environmental Impact Assessment Report. The assessment must be in accordance with the requirements stipulated by the OEC.
- 4. Inputs from the OEC, if provided within prescribed timeframes in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998), as amended, will be considered by the relevant competent authority for decision making. If no inputs are provided by the OEC within the prescribed timeframes, then the EAP must provide evidence of engagement with the relevant officials at the OEC and timeous requests for inputs.
- A signed copy of the full Defence Compliance Statement must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

6. CIVIL AVIATION

6(a) - PROTOCOL FOR THE ASSESSMENT AND REPORTING OF ENVIRONMENTAL IMPACTS ON CIVIL AVIATION INSTALLATIONS

1. SCOPE

This protocol provides the criteria for the assessment and reporting of impacts on civil aviation installations for activities requiring environmental authorisation. Requirements for the assessment and reporting of impacts on civil aviation installations are set out below, which shows how these requirements correlate with the sensitivity ratings as contained in the national web based environmental screening tool.

The national web based environmental screening tool can be accessed at: https://screening.environment.gov.za/screeningtool

2. REQUIREMENTS FOR ENVIRONMENTAL ASSESSMENT

TABLE 1: REQUIREMENTS FOR THE ASSESSMENT AND REPORTING OF IMPACTS ON CIVIL AVIATION FACILITIES FOR ACTIVITIES REQUIRING ENVIRONMENTAL AUTHORISATION

VERY HIGH SENSITIVITY

RATING - high likelihood for significant negative impacts on the civil aviation installation that cannot be mitigated. In-depth assessment of the potential impacts are likely to be required before development can be considered in these areas.

HIGH SENSITIVITY

RATING – potential for negative impacts on the civil aviation installation that can potentially be mitigated. Further assessment may be required to investigate potential impacts and mitigation measures.

1. General Information

1.1 An applicant intending to undertake an activity identified in the Scope of this Protocol, proposed on a site identified by the national web based environmental screening tool as being of "very high", "high", "medium" or "low" sensitivity for civil aviation must submit a Civil Aviation Compliance Statement.

2. Civil Aviation Compliance Statement

The Civil Aviation Compliance Statement must be prepared by an Environmental Assessment Practitioner for the site being submitted as the preferred development site and must indicate whether or not the proposed development will have an unacceptable negative impact on civil aviation installations.

- 3. The Civil Aviation Compliance Statement must contain, as a minimum, the following information:
- 3.1 A comment, in writing, from the South African Civil Aviation Authority (SACAA), which may include inputs from the Obstacle Evaluation Committee (OEC), if appropriate, confirming no unacceptable impact on civil aviation installations.

MEDIUM SENSITIVITY

RATING - low potential for negative impacts on the civil aviation installation, and if there are impacts there is a high likelihood of mitigation. Further assessment of the potential impacts may not be required.

LOW SENSITIVITY RATING -

No significant impacts on the civil aviation installation are expected in low sensitivity areas. It is unlikely for further assessment and mitigation measures to be required.

- 3.2 Should comment from the SACAA require further assessment, a copy of the assessment report and mitigation measures is to be attached with the Compliance Statement as part of the Basic Assessment Report (BAR) or Environmental Impact Assessment Report (EIAR). The assessment must be in accordance with the requirements stipulated by the SACAA.
- 4. Inputs from the SACAA, if provided within prescribed timeframes in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998), will be considered by the relevant competent authority for decision making. If no inputs are provided by the SACAA within the prescribed timeframes, then the EAP must provide evidence of engagement with the relevant officials at SACAA and timeous requests for inputs.
- 5. A signed copy of the **Civil Aviation Compliance Statement** must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

INDEPENDENT COMMUNICATIONS AUTHORITY OF SOUTH AFRICA

NO. 649 10 MAY 2019

ELECTRONIC COMMUNICATIONS ACT, 2005 (ACT NO. 36 OF 2005)

APPLICATIONS FOR TRANSFER OF AN INDIVIDUAL ELECTRONIC COMMUNICATIONS SERVICE AND INDIVIDUAL ELECTRONIC COMMUNICATIONS NETWORK SERVICE LICENCES FROM SOFT TOUCH COMPUTING CC TO GROW MAKHOSIKATI TRADING CC

- 1. The Independent Communications Authority of South Africa ("the Authority") hereby gives notice that it has received applications from Soft Touch Computing cc for the transfer of its Individual Electronic Communications Service ("I-ECS") and Individual Electronic Communications Network Service ("I-ECNS") licences. The applications were lodged in terms of clause 12 of the Processes and Procedures Regulations for Individual Licences, 2010 published in Government Gazette No. 33293 of 14 June 2010 and Regulation 11 of the Amendment Individual Processes and Procedures Regulations 2015 published in Government Gazette No.39871 of 30 March 2016, read with sections 13(1), (2) and (6) of the Electronic Communications Act 2005, as amended.
- 2. The transfer applications seek approval from the Authority to transfer the I-ECNS and I-ECS licences held by Soft Touch Computing cc ("the Applicant") to Grow Makhosikati Trading cc ("the Transferee") and will be evaluated on the basis of the following criteria:
 - a. promotion of competition in the ICT sector;
 - b. interests of consumers; and
 - c. equity ownership by HDP'S.
- 3. The Applicant submits that the Transferee is 100% owned by Historically Disadvantaged Persons (HDPs).

- 4. The applications, relevant schedule and any representations received pursuant thereto will be made available and open for inspection by any interested party in the Authority's library, during the Authority's office hours.
- 5. Any interested party is invited to lodge written representations to the applications within fourteen (14) working days from the date of publication of this notice in the Government Gazette.
- 6. Any person who makes written representations must indicate whether they require an opportunity to make oral representations in the event that the Authority decides to hold public hearings.
- 7. All written representations, responses and other correspondence in terms hereof must be directed to Mr Peter Mailula at ECNS, ECS and Postal Licensing Unit, Licensing Division, at Block B, 350 Witch Hazel Avenue, Eco Point Office Park, Eco Park, Centurion OR Private Bag X10, Highveld Park, 0169 OR by fax no. (012) 568 3658 OR by e-mail: PMailula@icasa.org.za
- 8. Any person who may lodge representations in terms hereof, must also furnish proof to the satisfaction of the Authority that a copy of the representation has been delivered by hand to Ms Helen Schormann at Soft Touch Computing cc located at Shop 2 Tarentaal Centre, West Acres, Nelspruit, 1200, **OR** sent by facsimile no: (086) 604 9823, **OR** sent by e-mail to bm@soft.co.za
- 9. Soft Touch Computing cc has the right to respond in writing to written representations made by any interested person on the transfer applications. The written responses must be lodged with the Authority within twenty-one (21) working days from the date of publication of this notice in the Government Gazette.

10. Soft Touch Computing cc must, at the time of lodging the written response, furnish proof to the Authority's satisfaction that it has delivered a copy of the response by hand, OR has sent a copy thereof by facsimile OR by e-mail to the relevant person having made the written representations.

DR. KEABETSWE MODIMOENG

ACTING CHAIRPERSON

INDEPENDENT COMMUNICATIONS AUTHORITY OF SOUTH AFRICA

NO. 650 10 MAY 2019

ELECTRONIC COMMUNICATIONS ACT, 2005 (ACT NO. 36 OF 2005)

APPLICATIONS FOR TRANSFER OF AN INDIVIDUAL ELECTRONIC COMMUNICATIONS SERVICE AND INDIVIDUAL ELECTRONIC COMMUNICATIONS NETWORK SERVICE LICENCES FROM CONEKT BUSINESS GROUP (PTY) LTD TO KGATONTLE SATELLITE OPERATIONS (PTY) LTD

- 1. The Independent Communications Authority of South Africa ("the Authority") hereby gives notice that it has received applications from Conekt Business Group (Pty) Ltd for the transfer of its Individual Electronic Communications Service ("I-ECS") and Individual Electronic Communications Network Service ("I-ECNS") licences. The applications were lodged in terms of clause 12 of the Processes and Procedures Regulations for Individual Licences, 2010 published in Government Gazette No. 33293 of 14 June 2010 and Regulation 11 of the Amendment Individual Processes and Procedures Regulations 2015 published in Government Gazette No.39871 of 30 March 2016, read with sections 13(1), (2) and (6) of the Electronic Communications Act 2005, as amended.
- 2. The transfer applications seek approval from the Authority to transfer the I-ECNS and I-ECS licences held by Conekt Business Group (Pty) Ltd ("the Applicant") to Kgatontle Satellite Operations (Pty) Ltd ("the Transferee") and will be evaluated on the basis of the following criteria:
 - a. promotion of competition in the ICT sector;
 - b. interests of consumers; and
 - c. equity ownership by HDP'S.
- 3. The Applicant submits that the Transferee is 100% owned by Historically Disadvantaged Persons (HDPs).

- 4. The applications, relevant schedule and any representations received pursuant thereto will be made available and open for inspection by any interested party in the Authority's library, during the Authority's office hours.
- 5. Any interested party is invited to lodge written representations to the applications within fourteen (14) working days from the date of publication of this notice in the Government Gazette.
- 6. Any person who makes written representations must indicate whether they require an opportunity to make oral representations in the event that the Authority decides to hold public hearings.
- 7. All written representations, responses and other correspondence in terms hereof must be directed to Mr Peter Mailula at ECNS, ECS and Postal Licensing Unit, Licensing Division, at Block B, 350 Witch Hazel Avenue, Eco Point Office Park, Eco Park, Centurion OR Private Bag X10, Highveld Park, 0169 OR by fax no. (012) 568 3658 OR by e-mail: PMailula@icasa.org.za
- 8. Any person who may lodge representations in terms hereof, must also furnish proof to the satisfaction of the Authority that a copy of the representation has been delivered by hand to Mr Andrew Hill at Conekt Business Group (Pty) Ltd located at Suites 8 & 9, 1st Floor, Waterfall View, Mahai Close, Waterfall Park, Midrand, OR sent by facsimile no: (086) 026 6358, OR sent by e-mail to andrewh@conekt.co.za
- 9. Conekt Business Group (Pty) Ltd has the right to respond in writing to written representations made by any interested person on the transfer applications. The written responses must be lodged with the Authority within twenty-one (21) working days from the date of publication of this notice in the Government Gazette.

10. Conekt Business Group (Pty) Ltd must, at the time of lodging the written response, furnish proof to the Authority's satisfaction that it has delivered a copy of the response by hand, OR has sent a copy thereof by facsimile OR by e-mail to the relevant person having made the written representations.

DR. KEABETSWE MODIMOENG

ACTING CHAIRPERSON

DEPARTMENT OF MINERAL RESOURCES

NO. 651

10 MAY 2019

MINE HEALTH AND SAFETY ACT, 1996 (ACT NO 29 OF 1996)

GUIDANCE NOTE ON MEDICO-LEGAL INVESTIGATIONS OF MINE DEATHS

I, DAVID MSIZA, Chief Inspector of Mines, under section 49 (6) of the Mine Health and Safety Act, 1996 (Act No. 29 of 1996) and after consultation with the Council, hereby issues the guidance note on medico-legal investigations of mine deaths in terms of the Mine Health and Safety Act, as set out in the Schedule.

DAWD MISTZA

CHIEF INSPECTOR OF MINES

SCHEDULE

GUIDANCE NOTE ON MEDICO-LEGAL INVESTIGATIONS OF MINE DEATHS

MINE HEALTH AND SAFETY INSPECTORATE

REFERENCE NUMBER: LAST REVISION DATE: DATE FIRST ISSUED: EFFECTIVE DATE: DMR 16/3/2/3-A9 First edition First edition 31 March 2019

DEPARTMENT OF MINERAL RESOURCES

MINE HEALTH AND SAFETY INSPECTORATE

GUIDANCE NOTE ON MEDICO-LEGAL INVESTIGATIONS OF MINE DEATHS

CHIEF INSPECTOR OF MINES

PART A: THE GUIDANCE NOTE 4 1. **FOREWORD** LEGAL STATUS OF THE GUIDANCE NOTE 2. THE OBJECTIVE OF THE GUIDANCE NOTE 3. **DEFINITIONS** 4. 5. ACRONYMS AND ABBREVIATIONS 6. MEMBERS OF THE TASK TEAM 7. BACKGROUND INFORMATION 8. RELEVANT ACTS AND OTHER STATUTORY PROVISIONS 6 **ROLES AND RESPONSIBILITIES OF STAKEHOLDERS** 8 9. 8 9.1 Employer 10 9.2 Department of Mineral Resources 11 9.3 South African Police Services 13 9.4 Procedure 14 10. MEDICO-LEGAL ASPECTS TO BE CONSIDERED 14 10.1 Performance of medico-legal post mortem examinations 10.2 Performance of medico-legal post mortem examinations 15 15 10.3 Who may be present at medico-legal examinations? 10.4 The completion of reports on Medico-Legal post mortem examinations 15 16 10.5 Occupational Diseases in Mines and Works Act requirements 16 11. CAUSES OF DEATHS 16 11.1 Primary cause of deaths 16 11.2 Contributing cause or condition 17 11.3 Predisposing causes or conditions 17 11.4 Precipitating causes or conditions 17 11.5 Terminal cause of death

11.6	11.6 Exclusive (sole) cause of death		
12. HUMAN IMMUNODEFICIENCY VIRUS AND ACQUIRED IMMUNODEFICIENCY SYNDROME		17	
13. ALLEGED SUICIDE CASES			17
ANNEXURE 1:		Guidance note for medico-legal investigation of deaths in the mining industry; Roles and responsibilities of stakeholder	19
ANNEXURE 2:		Certificate by medical practitioner	20
ANN	IEXURE 3:	Confidentiality of medico-legal post mortem findings and reports	22
ANN	IEXURE 4:	Referral letter - Mine related deaths	24

PART A: THE GUIDANCE NOTE

1. FOREWORD

The Guidance Note originates from the need to provide clarity on the process that must be followed for deaths that require a medico-legal **autopsy**.

The Guidance Note is intended to assist and give guidance to all stakeholders regarding their roles and responsibilities in cases of natural, unnatural or uncertain mine death.

This Guidance Note sets out good practice and should be read in conjunction with the current and relevant regulatory framework on medico-legal post mortem investigations and does not constitute a specific and/or separate protocol.

Stakeholders are advised to make full use of this document which represents the collective efforts of various stakeholders.

2. LEGAL STATUS OF THE GUIDANCE NOTE

This Guidance Note has been compiled specifically with a view to provide guidance to all relevant stakeholders regarding their roles and responsibilities with regards to medico-legal examinations and investigations of deaths (natural and unnatural) in the South African mining industry. The Guidance Note sets out good practice and must be read and interpreted within the existing legal framework on medico-legal investigations.

This Guidance Note will assist in determining whether the mining related activities may have contributed to the cause of death.

3. THE OBJECTIVE OF THE GUIDANCE NOTE

The objective of this guidance note is to improve the understanding of the legal obligations that relate to medico-legal autopsies and to clarify the roles and responsibilities associated with the handling of deaths that occur in the mining industry.

4. DEFINITIONS

- 4.1 "Autopsy" means the post mortem dissection of a body so as to determine the cause of death and the nature of injuries or diseases which may be present.
- 4.2 "Designated facility" means a medico-legal mortuary or laboratory especially designed for the medico-legal death investigation process under the auspices of the department of Forensic Pathology Services.
- 4.3 "Forensic Pathology Officer" means a person appointed by the department to provide a medico-legal investigation of death service within their scope of practice.
- 4.4 "Investigating Officer" means a member of the South African Police Service appointed in terms of the South African Police Service Act, 1995 (Act No. 68 of 1995) or an employee of the Independent Police Investigative Directorate appointed in terms of the Independent Police Investigative Directorate Act, 2011 (Act No. 1 of 2011),

designated as an **Investigating Officer** to investigate the cause and circumstance of death of a particular person.

- 4.5 "Medical practitioner" means a person registered as a medical practitioner in terms of the Health Professions Act, 1974(Act No. 56 of 1974).
- 4.6 "Medico-legal investigation of death" means the investigation into the circumstances, manner and possible causes of death which are or may have been due to unnatural causes as defined.
- 4.7 "Medical Inspectorate" means the Medical Inspector and mine inspectors for occupational medicine.
- 4.8 "Natural death" means deaths that are due entirely to natural diseases, and are not precipitated by any other event.
- 4.9 "Post mortem examination" means an examination of a body, with the purpose of establishing the cause and circumstance of death and factors associated with the death, and in the context of these regulations, for medico-legal purposes.
- 4.10 "South African Police Service" means the police service established in terms of the South African Police Service Act, 1995 (Act No. 68 of 1995).
- 4.11 "Unnatural death" for the purposes of the medico-legal investigation of death, the following shall be deemed to be deaths due to unnatural causes:
 - (a) any death due to physical or chemical influence, direct or indirect, or related complications;
 - (b) any death, including those deaths which would normally be considered to be a death due to natural causes, which may have been the result of an act, or omission of act, which may be criminal in nature;
 - (c) any death as contemplated in Section 48 of Health Professions Amendment Act 29 of 2007. The death of a person undergoing, or as a result of, a procedure of a therapeutic, diagnostic or palliative nature, or of which any aspect of such a procedure has been a contributory cause, shall not be deemed to be a death from natural causes as contemplated in the Inquest Act, 1959 (Act No. 58 of 1959), or the Births, Marriages and Deaths Registration Act, [1963 (Act No. 81 of 1963)] 1992 (Act No. 51 of 1992); and
 - (d) where the death is sudden and unexpected, or unexplained, or where the cause of death is not apparent;

5. ACRONYMS AND ABBREVIATIONS

AIDS	Acquired Immunodeficiency Syndrome
CloM	Chief Inspector of Mines
DMR	Department of Mineral Resources
FPS	Forensic Pathology Services
HIV	Human Immunodeficiency Virus
IoM	Inspector of Mines
MHSA	Mine Health and Safety Act
MHSI	Mine Health and Safety Inspectorate
NIOH	National Institute for Occupational Health

SAPS

South African Police Services

ODMWA

Occupational Diseases in Mines and Works Act

OMP

Occupational Medical Practitioner

6. MEMBERS OF THE TASK TEAM

This guidance note was prepared by members of the Task Team, which comprised of:

Dr. D Mokoboto

(State) Chairperson

Ms. M.Hlapane

(State)

Dr. Z Eloff

(Employers)

Mr. A Letshele

(Labour)

7. BACKGROUND INFORMATION

The mining industry experiences various challenges with regards to the handling of investigations of deaths.

These are (amongst others):

- (a) Uncertainties regarding the roles and responsibilities of stakeholders, mentioned in item 9 below, in an event of death.
- (b) A significant proportion of deaths in the mining industry is complex and requires specialists' skills when performing medico-legal **post mortem examinations**.
- (c) Sudden deaths have been reported, where there is no associated accident or occurrence.
- (d) The manner in which the post-mortem process is handled by:
 - the employers; and
 - · the State's Forensic Pathology Service (FPS).
- (e) Timeous processing and submission of a post mortem examination report to facilitate the conclusion of the MHSI investigations in terms of section 11 (5) and 60 (1) of the MHSA.

It is important that all stakeholders co-operate in the collection of any relevant information or evidence to ensure that all aspects relevant to a death within the mining industry are considered during an investigation.

8. RELEVANT ACTS AND OTHER STATUTORY PROVISIONS.

The Guidance Note should be read in conjunction with the following legislations that govern how deaths should be handled in South Africa.

It is important that the following legislations, regulating the performance of **post mortem examinations**, are known and understood:

	ACT	PARTICULARS OF THE ACT
1	Mine Health and Safety Act No.29 of 1996, as amended	 Provides for the employer notifying the Principal Inspector of any accident or occurrence that results in death [section 11 (5B) (c)]. Provides for no disturbance to the site where death or injury occurred [section 11 (8)]. Initiation of investigations and inquiries in case of death of a person on a mine [section 60(1) and 65] Allows for other legislation regulating the holding of an inquest or other inquiry into a death [section 65 (4)]. Section 64(1) and 72 state the requirement for the written report of recommendations and remedial action following from investigation and inquiry.
2	Occupational Disease in Mines and Works Act No 78 of 1973, as amended	 Provides that if employees who worked in mines or works die, their cardio-respiratory organs must be sent to the NIOH. Permission from the family to remove such organs is needed in the case of natural death. If the post mortem is being done under the provision of another Act (for example the Inquest Act,) the cardio-respiratory organs may be removed and forwarded to the NIOH.
3	Inquest Act No 58 of 1959	 Provides for the duty to report any death due to causes other than natural [section 2 (1)]. Provides the procedure which must be followed in cases of unnatural deaths [section 3]. The body may be exhumed if already buried [section 4]. Consent of the relatives for autopsy is not required. An inquest into the cause of death.
4	The Regulations Regarding the Rendering of Forensic Pathology Service (GN R636, GG 30075) of the National Health Act 61 of 2003	 A post mortem examination may be done to determine the cause of death in cases of suspected contagious diseases. Provides for removal and transportation of bodies, medico-legal post-mortem examinations, practitioners authorised to observe post-mortem. Provides for medico-legal investigation of specific categories of unnatural deaths [section 36 (1) (3)].
5	Health Professions Amendment Act No 29 of 2007,	 Provides that deaths under the influences of or contributed to by an anaesthetic are unnatural. [section 48].
6	Births and Deaths Registration Act No 51 of 1992	 Defines conditions under which a medical practitioner may or may not issue a death certificate for natural causes [sections 14, 15, 16 and 17].
7	Criminal Procedures Act No. 51, 1977, as amended	 Provides for an officer of the State officially concerned in the investigation of the case receiving, from the authorised person, a written statement which incorporates relevant medical

	ACT	PARTICULARS OF THE ACT
		opinions or comments upon the post mortem findings or the clinical or other evidence in the case.
8	National Health Act chapter 8	 Provides the control of use of blood, blood products, tissue and gametes in humans.
9	Section 64 of the MHSA	Reports on investigations.
10	Section 72 of the MHSA	 Inquiry records and reports.

9. ROLES AND RESPONSIBILITIES OF STAKEHOLDERS

When a death occurs on the mine premises, the roles and responsibilities of stakeholders are as follows:

9.1 Employer

- (a) The employer should notify the Principal Inspector of Mines, health and safety representatives and the SAPS.
- (b) The employer should initiate a section 11 (5) investigation.
- (c) The employer must take part in the investigation conducted in terms of section 11 (6) and 60 (1) of the **MHSA** if so directed by the PloM.
- (d) The employer should ensure that the following steps be taken:
 - barricading of the accident scene;
 - ii. taking of names of witnesses and/or survivors;
 - iii. noting in writing the observations of the accident scene;
 - iv. taking photographs of undisturbed scene; and
 - making note of environmental conditions.
- (e) The employer should bring the death to the attention of the OMP or any medical practitioner, as soon as possible, who must certify the death.

9.1.1 Medical Practitioner

- (a) A medical practitioner (this may also be the OMP) must examine the body and indicate if the likely cause of death was due to natural or unnatural causes.
- (b) The **medical practitioner** should declare death to be natural only if:
 - they are familiar with or has access to the deceased's medical records;

- ii. the deceased was known to have a medical condition that was likely to be the cause of death; and
- iii. after they have been made fully conversant with the circumstances surrounding the death, including the environmental conditions.
- (c) If a death of any person admitted to a hospital from a mine has occurred following admission for a disease, and the death is deemed to be due to natural causes, the medical practitioner completes the death certificate and no further investigation is required.
- (d) If the cause of death is natural, the medical practitioner should complete a death notification certificate (BI 1663) or Department of Home Affairs (DHA) 1663. A copy of this form should be handed to the next-of-kin or funeral undertakers. If a medical practitioner is uncertain or is of the opinion that the death was due to causes other than natural, he/she shall not issue the above-mentioned form and shall inform a police officer and Forensic Pathology Services. (See Annexure 2 on certification of death and unnatural deaths).
- (e) In uncertain and unnatural cases, a medical practitioner must submit with the body or as soon as possible, all information pertaining to the deceased that may be relevant for medico-legal examinations.
- (f) All anaesthetic associated deaths when handed over to FPS should be accompanied by form D28 and GW7/24 (anaesthetic forms) which explains the anaesthetic management and follow up during the procedure before death.
- (g) All forms of intubation, venous lines, drips, catheters and surgical packs should be left in situ as they will be assessed during autopsy.
- (h) No medical practitioner may perform a post mortem examination on the body of a deceased person, unless it is specifically done in terms of the Inquests Act (i.e. within the formal framework of medico-legal investigation of death and with the full involvement and consent of the SAPS).
- (i) The only exception is when a certificate (form BI 1663), confirming exclusively natural causes of death, was issued before a post mortem examination was performed. In this event, a post mortem examination may be carried out in terms of the Chapter 8 of the National Health Act, 2003 (Act 61 0f 2003) and can only be done with the expression of prior consent of the next of kin or where the deceased has consented to such an examination prior to his/her death.
- (j) Arrange for removal of cardiorespiratory organs in line with ODMWA. Ensure that consent was given by employee or relatives to remove lungs and heart.

9.1.2 Occupational Medical Practitioner

The OMP should:

- (a) Assist the medical practitioner who completes the death certificate with relevant information (e.g. medical surveillance data, environment where the body was found, etc.) where required.
- (b) Submit, with the body or as soon as possible, all information pertaining to the deceased that may be relevant to the medico-legal examinations, as per Mine Accident Scene Form (Annexure 4).
- (c) Participate in the investigation (section 11(5) of the MHSA).
- (d) Assist the **Medical Inspectorate** with any information that may be required.

9.2 Department of Mineral Resources

- 9.2.1 The Chief Inspector of Mines refer to MHSA.
- 9.2.2 The Principal Inspector of Mines
 - (a) The PloM must ensure that an inspection in loco is carried out as part of Section 60 of the MHSA investigation. It is advisable to take sworn statements from witnesses wherever possible. If from the investigation there is suspicion of an irregularity falling outside the ambit of the MHSA, the PloM must report the matter to the police. The provisions of the MHSA dealing with death in mines should be explained to the police when necessary.
 - (b) The PloM must ensure the following:
 - The requirements for reporting of any deaths at mines are complied with as per the MHSA.
 - ii. All inspectors clearly understand what is expected of them when accidents are reported.
 - iii. The **Medical Inspectorate** participates in the investigation, when necessary.
 - iv. The recommendations and remedial action from Section 64 and 72 reports are vigorously followed up to prevent/minimise recurrence.
 - v. There is continuous symbiotic communication between the SAPS stations and DMR regional offices concerning all mine deaths. The purpose of this is to ensure that no death happens without being investigated due to claims that it is not mining related.
 - vi. If the findings of the post mortem examination link the death to activities and conditions at a mine, then the MHSI should consider

these activities and conditions during the statutory investigation and inquiry under the MHSA.

vii. If there is uncertainty about whether the accident is mine related or not, the matter is referred to the **CloM** for a ruling.

9.2.3 The Inspector of Mines and Medical Inspector

- (a) The Inspectorate must offer assistance as may be required by the National Prosecuting Authority, SAPS and magistrates in the inquest that may follow.
- (b) Before an inspection in loco is conducted, the Inspector needs to coordinate arrangements with the relevant persons, e.g. mine managers, union representatives and necessary mining experts. This should be done to prevent unnecessary delays and possible re-inspections later.
- (c) The **Medical Inspectorate** can communicate with the **OMP** to gather medical information that may be considered important to the investigation.
- (d) The Medical Inspectorate can request a post mortem report from the SAPS Investigating Officer and can communicate with the authorised person at the Forensic Pathology Service who performed the post mortem to obtain any relevant information regarding the post mortem examination.

9.3 South African Police Services

- (a) The **SAPS** must investigate all deaths due to unnatural and/or uncertain causes, and open an inquest docket (section 2 of the Inquest Act, Act No 58 of 1959, as amended).
- (b) The **SAPS** to notify the Forensic Pathology Services, complete a SAP 180 form and arrange for a medico-legal **post mortem examination** to be conducted.

9.3.1 Forensic Pathology Service

- (a) The relevant Member of the Executive Council of a province must, within national policy and in terms of these regulations, ensure that a Forensic Pathology Service is established and managed within the department.
- (b) The Service contemplated includes, but is not limited to:
 - where appropriate, commencing with a scene of death investigation in consultation with the Investigating Officer and or appropriate South African Police Service member who is on the scene, which includes but is not limited to, taking notes, questioning family and other witnesses, examining the death scene and photographing the deceased or any exhibit or specimens;
 - ii. obtaining any information that is relevant to the medico-legal investigation of a death, including medical and social history, records, as well as taking witness statements;

- iii. taking responsibility for the collection of a body and removal from the scene;
- taking responsibility for the custody of a body from the scene of death until released for burial or cremation, and the processes attached thereto;
- taking into custody, thoroughly documenting and maintaining evidence and specimens relating to a body and any associated items or articles at all times;
- vi. assisting, as far as is possible, with the process of identification of the deceased;
- vii. conducting a post mortem investigation, including external and internal examination of a body and retaining of material, tissue or fluids for evidentiary or diagnostic purposes;
- viii. requesting and conducting appropriate special investigations;
- ix. providing medico-legal reports, chain of custody statements, expert testimony and opinions;
- x. archiving documents, specimens and related materials;
- xi. collecting, reviewing and analysing related data; and
- xii. providing information and advice to health or other government authorities or departments.

9.3.1.1 Referral of unnatural cases

All cases of unnatural death as defined in these regulations must be referred to the Forensic Pathology Service.

9.3.1.2 Death scene

The Service is responsible for attending and participating in the death scene investigation, which may include, but is not limited to:

- (a) Managing a request for forensic pathology service response.
- (b) Assessing the scene of death in a given situation, this may include any private, public or business premises, vessel, train, motor vehicle, aircraft where death has occurred for the purposes of conducting a comprehensive death scene investigation.
- (c) Performing forensic pathology activities associated with the scene of death in terms of relevant scope of practice including:

- Declaring death in the following obviously dead cases decapitation, gross mutilation, putrefaction, and charring.
- Examining the body on scene and recording of the incident for the purposes of forensic investigation which includes but may not be limited to photography, sketching, and documentation.
- Interviewing any relevant party including the next of kin and recording medical history and relevant information.
- Obtaining medical records of the deceased from any party or source where relevant.
- v. Assess, handle, collect, preserve and record evidence in line with forensic pathology service procedural requirements.

9.4 Procedure

The summary of steps to be followed in the event of a death in the mining industry is in Annexure 1.

9.4.1 Death of an employee

Reporting to the MHSI about the death

As stipulated in Section 60 (1), any accident or occurrence at a mine that results in the death of a person must be investigated.

In the event of a death, the employer, is required to get a OMP/medical practitioner to certify the death.

The **OMP/medical practitioner** should take into account the circumstances surrounding the death, as provided by the employer, as well as the occupational and medical history of the deceased in determining whether the death is due to natural, unnatural or uncertain causes. Should the **OMP/medical practitioner** decide that death is due to natural causes, a death notification certificate (BI1663) should be completed.

In cases where the **medical practitioner/OMP** determines the death as unnatural or uncertain, the **medical practitioner/OMP** must notify the **SAPS** who will open a docket and notify the Forensic Pathology Services. Should the **SAPS** refuse to open a docket or fail to refer the case to the **FPS**, the **medical practitioner** should refer the matter to the **FPS**, the regional medicine inspector and copy the Chief Specialist Forensic Pathologist. A record of this referral must be kept for future reference. The **FPS** must be requested to respond in writing to such referrals.

An authorised person will conduct the post mortem and provide a report (FPS 007) to the SAPS Investigating Officer who will complete the investigation. The SAPS Investigating Officer must give a copy of the post mortem report to the Medical Inspectorate of the DMR for the purposes of completing the Section 60 (1) investigation.

- Declaring death in the following obviously dead cases decapitation, gross mutilation, putrefaction, and charring.
- Examining the body on scene and recording of the incident for the purposes of forensic investigation which includes but may not be limited to photography, sketching, and documentation.
- Interviewing any relevant party including the next of kin and recording medical history and relevant information.
- Obtaining medical records of the deceased from any party or source where relevant.
- v. Asses, handle, collect, preserve and record evidence in line with forensic pathology service procedural requirements.

9.4 Procedure

The summary of steps to be followed in the event of a death in the mining industry is in Annexure 1.

9.4.1 Death of an employee

Reporting to the MHSI about the death

As stipulated in Section 60 (1), any accident or occurrence at a mine that results in the death of a person must be investigated.

In the event of a death, the employer, is required to get a **OMP/medical practitioner** to certify the death.

The **OMP/medical practitioner** should take into account the circumstances surrounding the death, as provided by the employer, as well as the occupational and medical history of the deceased in determining whether the death is due to natural, unnatural or uncertain causes. Should the **OMP/medical practitioner** decide that death is due to natural causes, a death notification certificate (BI1663) should be completed.

In cases where the **medical practitioner/OMP** determines the death as unnatural or uncertain, the **medical practitioner/OMP** must notify the **SAPS** who will open a docket and notify the Forensic Pathology Services. Should the **SAPS** refuse to open a docket or fail to refer the case to the **FPS**, the **medical practitioner** should refer the matter to the **FPS**, the regional medicine inspector and copy the Chief Specialist Forensic Pathologist. A record of this referral must be kept for future reference. The **FPS** must be requested to respond in writing to such referrals.

An authorised person will conduct the post mortem and provide a report (FPS 007) to the SAPS Investigating Officer who will complete the investigation. The SAPS Investigating Officer must give a copy of the post mortem report to the Medical Inspectorate of the DMR for the purposes of completing the Section 60 (1) investigation.

9.4.2 Death in a hospital

Once a death occurs, a **medical practitioner** must determine if the death is natural, unnatural or uncertain. The medical and occupational history of the deceased should be taken into account in reaching this decision. If the death is due to natural causes, the **medical practitioner** must complete a notification of death certificate (BI 1663).

If a death has occurred in a hospital and is deemed to be due to unnatural causes — i.e. as result of or due to complications that developed following a mine accident or as contemplated in Health Professions Amendment Act 29 of 2007, section 48 (anaesthetic death) - the medical doctor shall not complete the death notification form (BI 1663) and should follow the procedure for unnatural causes of death.

If the death is unnatural/uncertain, then the process for unnatural/uncertain deaths, described above, should be followed.

10. MEDICO-LEGAL ASPECTS TO BE CONSIDERED

10.1 Performance of medico-legal post mortem examinations

A post mortem examination must only be conducted at a designated facility or at an institution to which the Service has referred the body.

10.1.1 Practitioners authorised to conduct or assist with post mortem examination

- (a) A post mortem examination must only be performed by an authorised medical practitioner who has been appointed in the Service for such purposes.
- (b) Assistance at a post mortem examination may only be rendered by authorised forensic pathology officers who have been appointed in the Service such purposes, within their scope of practice.
- (c) An authorised medical practitioner may consult with other qualified professionals and request such professionals to participate in the post mortem examination and contribute to the further examination of such a body.
- (d) A student or trainee personnel in the Service may participate in a post mortem examination, but only under the direct guidance and supervision of an authorised person.
- (e) A forensic pathology officer may remove a specimen or exhibit from the deceased under the instruction and supervision of an authorised medical practitioner.
- (f) Where necessary, an authorised medical practitioner may authorise the removal of a fluid or tissue specimen by a forensic pathology officer or by a member of the SAPS Victim Identification Centre, prior to such removal.

(g) During the performance of post mortem examinations, the forensic pathology officer may perform eviscerations and organ removals under the supervision of an authorised medical practitioner and assist him or her with such post mortem examination and perform certain functions connected therewith, as contained within their scope of practice and job descriptions.

10.2 Performance of medico-legal post mortem examinations

In the medico-legal investigation of unnatural and/or uncertain deaths, medico-legal **post mortem examinations** should only be carried out by **FPS** pathologist/forensic practitioners who have been appointed by the province for this purpose and who work in association with the police in a given area or region.

10.3 Who may be present at medico-legal examinations?

In terms of Section 3 (5) of the Inquest Act, the only persons who may be present at a medico-legal examination are:

- (a) A policeman
- (b) Any other **medical practitioner** nominated by any person who has satisfied the magistrate, within whose area of jurisdiction such examination takes place, that he/she has a substantial and peculiar interest in the matter of the examination.
- (c) Any other **medical practitioner** nominated by the state appointed **FPS** pathologist/forensic practitioner conducting the examination.
- (d) The state appointed pathologist/forensic practitioner conducting the examination.

10.4 The completion of reports on Medico-Legal post mortem examinations (Form FPS 007)

(Chapter 6 of National Code of Guidelines of Forensic Pathologists in South Africa)

- (a) The completed form or report must be handed to the SAPS Investigating Officer investigating the circumstances of death.
- (b) Reports must be as detailed as possible in legible handwriting, but preferably typewritten on a word processor using the form FPS 007 as a template.
- (c) It is desirable that photographs of the body are taken of all the injuries present at the time of the **post mortem examination**.
- (d) The appointed state FPS pathologist/forensic practitioner should complete form GW7/15 in all cases, regardless of whether the death was due to natural or unnatural causes, and hand the reports to the SAPS Investigating Officers.
- (e) No copies of form GW7/15 or any information concerning the **post mortem examination** may be divulged to any person except to Government Officials which may require this for the purposes of:
 - i. The Inquest Act, 1959 (Act No 58 of 1959)

- ii. The Mine Health and Safety Act, 1996 (Act no 29 of 1996)
- iii. The Occupational Health and Safety Act of 1993 (Act 85 of 1993)
- Occupational Disease in Mines and Works Act of 1973 (Act No 78 of 1973)
- v. The Compulsory Motor Vehicle Insurance Act of 1972 (Act No 56 of 1973)
- vi. The Prisons Act, 1959 (Act No 8 of 1959)
- vii. The Aviation Act, 1962 (Act No 74 of 1962)
- viii. The Criminal Procedure Act, 1977 (Act no 51 of 1977)
- ix. The Surgeon-general Act of South Africa Defence Force
- (a) In all other cases, persons requiring information must be referred to the SAPS Investigating Officer or magistrate who may issue a copy of the report. Note that attorneys are not Government Officials and must obtain a copy via the magistrate.

NOTE:

More details on the confidentiality of medico-legal reports are in Annexure 3.

10.5 Occupational Diseases in Mines and Works Act requirements

- (a) The removal of the cardio-respiratory organs of persons who fall under the Occupational Diseases in Mines and Works (ODMWA) Act No. 78 of 1973, is not a medico-legal function, and where the removal of these organs is required in terms of the Act, such removal must not interfere with the post-mortem investigations (if required).
- (b) The cardio-respiratory organs must be removed, with the consent of the family, and forwarded to the NIOH. The results of the NIOH autopsy examination must be sent to the Medical Bureau of Occupational Diseases (MBOD) for certification and possible compensation in the event that occupational disease is diagnosed. This applies to all mineworkers including contractor employees.

CAUSES OF DEATHS

11.1 Primary cause of deaths

The primary medical cause of death is described as the disease or injury, which initiated the train of morbid events leading directly or indirectly to death.

11.2 Contributing cause or condition

The contributing cause or condition is not the primary cause of death but contributes to the death being earlier than otherwise expected. Here, causation is relevant e.g. diabetes mellitus, coronary arteriosclerosis.

11.3 Predisposing causes or conditions

Predisposing or underlying conditions or causes may lead to a particular event. They may be closely related to the contributing cause or condition and often cannot be distinguished from it. Alcohol and barbiturate (sleep inducing drugs) ingestion, epileptic fits and psychological conditions are examples of predisposing or underlying conditions which may cause an accident in which the subject is injured. Even if these conditions cannot be determined at a **post mortem examination** they must be borne in mind.

11.4 Precipitating causes or conditions

These are conditions which causes something to happen immediately or cause the immediate development of a particular illness.

11.5 Terminal cause of death

The terminal cause of death is usually the result of a complication which occurs. A person with a head injury (the primary medical cause) often develops bronchopneumonia (the terminal cause).

11.6 Exclusive (sole) cause of death

The exclusive or sole cause of death is a cause where no contributing or other factors play a role. This cause is the primary medical cause of death where, for instance, a person receives a stab wound into the aorta and dies. In this case there can be no doubt as to the cause of death.

NOTE:

The investigation of death as a result of environmental conditions (such as heat illnesses) may be difficult to evaluate from a technical and/or medico-legal perspective.

It is advisable therefore that the **post mortem examination** be conducted as a matter of urgency after death and that emphasis be given to all available medical information and circumstantial history.

12. HUMAN IMMUNODEFICIENCY VIRUS AND ACQUIRED IMMUNODEFICIENCY SYNDROME

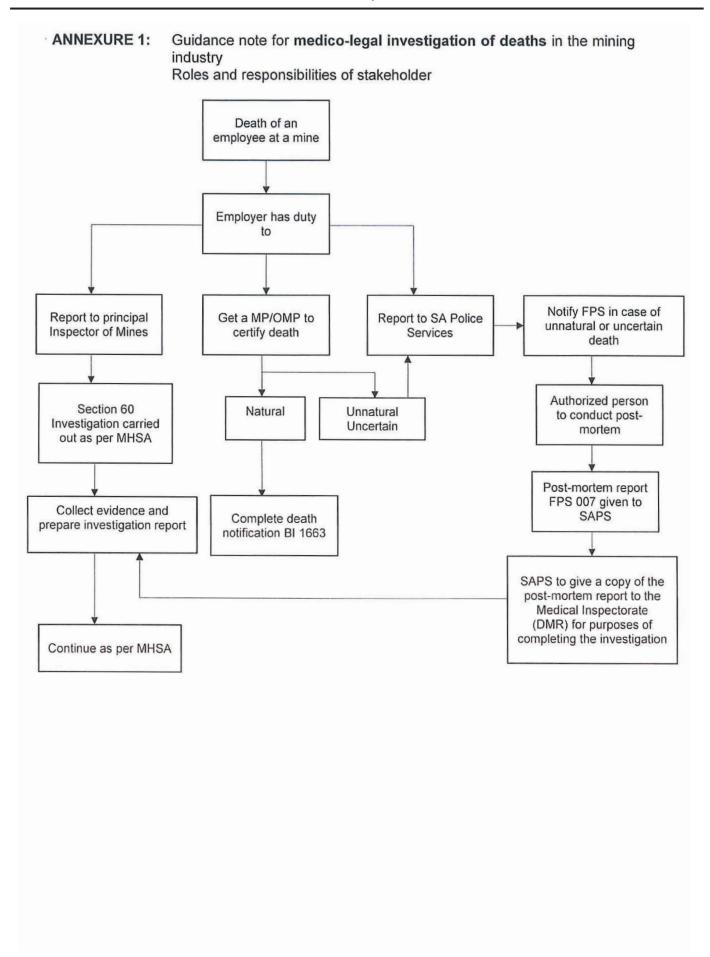
Note should be taken that the presence of **HIV** and **AIDS** is not to be regarded as an automatic cause of death. All deaths following a mine injury should be investigated irrespective of the **HIV** status of the deceased.

13. ALLEGED SUICIDE CASES

Every year the South African mining industry experiences a number of suicides. The following will provide some guidance regarding evidence that must be gathered to enable the **CIOM** to make a ruling in respect of whether the particular incident is a mine accident or not.

One must not lose sight of the fact that a suicidal person usually sends out signals of distress and whenever possible these need to be followed up to obtain a better picture of the situation.

- 13.1 Main reasons for committing suicide. These include but are not limited to the following:
 - Major Depression
 - Alcohol abuse
 - Drug abuse
 - Debts (financial problems)
 - Marital problems
 - Job loss
 - Health problems including mental problems (medical records)
 - Perceived rejection
- 13.2 Some main methods adopted to commit suicide: These include but are not limited to the following:
 - Hanging (most common)
 - Jumping from heights, into excavations
 - Drowning
- 13.3 Some evidence which can be followed up:
 - Suicide notes or personal letters (may not always be present).
 - Statements from colleagues, friends or relatives regarding the personal problems faced by the person or admissions made.
 - Evidence of financial difficulties and a plea for urgent assistance to colleagues, friends, relatives or employer.
 - Clothing neatly stacked with cap lamp and hard-hat removed.
 - A number of reported deaths have occurred shortly before the termination of work contracts or before onset of leave.


When recommending that a death be classified as a suicide, the **Investigating Officer** must bear in mind that an error in classification can have severe social, legal and financial ramifications. With that in mind, the **Investigating Officer** must endeavour to completely understand the suicide by familiarising him/herself with the risk factors, the methods and the entire scenario, as well as the presence of myths and falsehoods.

13.4 Suspected substance abuse (alcohol and drugs)

As a matter of cause, blood samples should be taken for alcohol and substance tests.

NOTE:

In all cases the completed inquiry, together with the recommendations of the **IoM**, must be forwarded to the **CIoM** to make the final ruling.

ANNEXURE 2: Certificate by medical practitioner

- In terms of the Births and Deaths Registration Act, a certificate (Notification / Register of Death / Stillbirth - BI 1663) stating the cause of death, must be issued promptly where appropriate.
- The Births and Deaths Registration Act states that:
 - (a) Section 15(1) Where a medical practitioner is satisfied that the death of any person who was attended before his death by the medical practitioner was due to natural causes, he shall issue a prescribed certificate stating the cause of death.
 - (b) Section 15 (2) A medical practitioner who did not attend any person before his death but after the death of the person examined the corpse and is satisfied that the death was due to natural causes, may issue a prescribed certificate to that effect.
 - (c) Section 15 (3) If a medical practitioner is of the opinion that the death was due to other than natural causes, he shall not issue a certificate mentioned in subsection (1) or (2) and shall inform a police officer as to his opinion in that regard.
 - (d) Section 17 (1) After an investigation as to the circumstances of a death due to other than natural causes in terms of section 3 of the Inquests Act, 1959... the medical practitioner concerned shall, as soon as he is satisfied that the corpse concerned is no longer required for the purposes of an examination mentioned in the said section 3, issue a prescribed certificate to that effect and deliver it to the police officer concerned.
 - (e) Section 17 (2) After the certificate referred to in subsection (1) has been issued, the police officer concerned, or any person contemplated in section 4, as the case may be, may, on the basis of the said certificate, complete the prescribed death register, without stating a cause of death, and the police officer concerned or the person contemplated in section 4, as the case may be, may issue the prescribed burial order authorising burial.
- 3. The Inquests Act, 58 of 1959, provides for the holding of inquests in cases of deaths due to other than natural (unnatural) causes. Sections 2 and 3 deals with the duty to report deaths and the investigation of the circumstances of certain deaths. The Inquests Act states:
 - (a) Section 2 (1) Any person who has reason to believe that any other person has died and that the death was due to other than natural causes, shall as soon as possible report accordingly to a policeman, unless he has reason to believe that a report has been or will be made by any other person.
 - (b) Section 3(1) Subject to the provisions of any other law providing for an investigation of the circumstances of any death, any policeman who has reason to believe that any person has died and that such a person has died from other than natural causes, shall:

- Section 3 (1) (a) investigate or cause to be investigated the circumstances of the death or alleged death.
- Section 3 (1) (b) report or cause to be reported the death or alleged death to the magistrate of the district concerned, or to a person designated by the magistrate.
- iii. Section 3 (2) If the body of the person who has allegedly died from other than natural causes is available, it shall be examined by the district surgeon or any other **medical practitioner**, who may, if he deems it necessary for the purpose of ascertaining with greater certainty the cause of death, make or cause to make an examination of any internal organ or any part or any of the contents of the body, or any other substance or thing.
- iv. Section 3 (3) For the purposes of any examination mentioned in subsection(2):
 - Section 3 (3) (a) any part or internal organ or any of the contents of a body may be removed there from.
 - Section 3 (3) (b) a body or any part, internal organ, or any part of the contents of a body so removed there from may be removed to any place.
- Section 4 A body which has already been interred may, with the permission
 of a magistrate or attorney-general within whose area of jurisdiction it has
 been interred, be disinterred for the purpose of any examination mentioned
 in subsection (2).

ANNEXURE 3: Confidentiality of medico-legal post mortem findings and reports

- Section 212 of the Criminal Procedures Act, 1977, provides for the handing in of reports on post mortem examinations in affidavit form in court. It is advisable that all such reports be in affidavit form since, especially in preparatory examination, these reports may be handed in without the authorised person having to appear in court.
- 2. If requested to do so by an officer of the State officially concerned in the investigation of the case or in presenting evidence of the case before a court, the authorised person may furnish him/her with a written statement which incorporates relevant medical opinions or comments upon the post mortem findings or the clinical or other evidence in the case. Preferably the case should be referred to a regional FPS consultant.
- 3. No copies of Form FPS 007 (the post mortem report) may therefore be divulged to any other person except to the SAPS and the Courts, after which official bodies, who may require this in terms of a stipulation of any Act, may obtain copies of the post mortem examination reports through the SAPS investigation officers or regional magistrates.
- 4. In all cases, persons may be referred to the relevant SAPS Investigating Officer, magistrate or Director of Public Prosecutions, who may issue a copy of the report. It is important to note that private attorneys, family members and insurance companies do not represent official bodies and must obtain a copy of the report via the SAPS Investigating Officer or the magistrate, even in cases of motor vehicle accidents. authorised person is requested to fill out forms for insurance purposes, cremation, etc. it is advisable to only certify on the forms supplied that a medico-legal post mortem examination has been performed, stating the reference number of the report and date of the examination, and that a copy of the report may be obtained from the relevant magistrate or to issue the relevant FPS Form. This information is always regarded to be confidential and such forms should be sealed appropriately.
- 5. In cases of notifiable conditions under the National Health Act of 2003 (Act No 61 of 2003), the relevant notification must be done.
- No information (verbal or otherwise) regarding the investigation and outcomes of a case should be divulged by any person other than the authorised person, at his/her discretion, as per section 20(4) of the Inquests Act 58, 1959.
- Any requests by the media for any information relating to cases, must be referred to the facility manager or authorised person, who must refer it to the Provincial Department of Health.

ANNEXURE 4: Referral letter - Mine related deaths

REFERRAL LETTER - MINE RELATED DEATHS

SECTION A: Details	of investigator
--------------------	-----------------

Name of the investigator:			
Contact details:			
E-MAIL ADDRESS			
Name of mine:			
Physical address:			
Date of incident: /			
Estimated time/date of death: : : /			
Date and time of collection of body by:/ _/			
SECTION B: Deceased particulars			
Sex: Male Female			
Age: ID/Passport no:			
Rigor Mortis: Hypostasis/Lividity: Body Temperature: °C Type of work employed in:			
SECTION C: Conditions at site of incident			
Underground: Surface:			
Suspected cause of injury/death:			
Electrical discharge / Electrocution			
Circumstances:			
2. Entrapment			
Circumstances:			
3. Explosions			
Circumstances:			

4. Fall						
Circumstances:						
Height: Moving vehicle: Other:						
5. Burns						
Circumstances:						
Flame: Liquid: Chemical: Gas: Other:						
6. Thermal Stress						
Ambient temperature: °C						
Circumstances:						
7. Transport: Tram / Lifts / Vehicle / Other						
Single accident:						
Multiple accidents: Side impact: Passenger:						
Roll over: Pedestrian: Pedestrian:						
Circumstances:						
8. Gassing / poisoning						
Suspected gas/es:						
Circumstances:						
9. Sudden Death / Suicide / Unknown						
Circumstances:						
SECTION D: Signatures						
Rank of the investigating officer:						
Signature of investigator:						
Date: YEAR / MONTH / DAY						
Time:: :						

DEPARTMENT OF RURAL DEVELOPMENT AND LAND REFORM

NO. 652 10 MAY 2019

GENERAL NOTICE IN TERMS OF THE RESTITUTION OF LAND RIGHTS ACT, 1994 (ACT NO.22 OF 1994)

Notice is hereby given in terms of section 11 (1) of the Restitution of Land Rights Act, 1994 (Act No.22 of 1994 as amended) that a claim for restitution of land rights on:

REFERENCE : 6/2/2/D/49/0/0/21

CLAIMANT : Nicolas Johannes Bosman (Family Claim)

PROPERTY DESCRIPTION: Farm Eersterevier 621, Kareedouw, Koukama Local

Municipality, Sarah Baartman District Municipality

in the Eastern Cape Province

EXTENT OF LAND 13.9757 Hectares

TITLE DEED T 6673/1979

CURRENT OWNER Naude Stephanus David

DATE SUBMITTED : 29/12/1998

Has been submitted to the Regional Land Claims Commissioner for the Eastern Cape and that the Commission on Restitution of Land Rights will investigate the claim in terms of the provisions of the Act in due course.

Any person who has an interest in the above-mentioned land is hereby invited to submit, within fourteen (14) days from the publication of this notice, any comments/information to:

Office of the Regional Land Claims Commissioner : Eastern Cape Department of Rural Development and Land Reform

PO Box 1375 East London 5200

Tel: 043 700 6000 Fax: 043 743 3687

Mr. L.H. Maphutha

Regional Land Claims Commissioner

DEPARTMENT OF TRADE AND INDUSTRY

NO. 653 10 MAY 2019

I, Dr Rob Davies, Minister of Trade and Industry, by virtue of the powers vested in me in terms of the Special Economic Zones Act No. 16 of 2014 (Gazette No. 39667 of 9 February 2016, Proclamation No. R. 6 of 2016) promulgate the following notice.

1. Intention to designate the Bojanala Special Economic Zone

A total land area of 1175 ha is intended to be designated as the Bojanala Special Economic Zone, located in Mogwase, in the Moses Kotane Local Municipality, Bojanala District, North West province. The SEZ comprises of three (3) land areas which is an industrial park, a fully serviced land with bulk infrastructure and a greenfield site, bordered on the north by the Main road, to the east by the R105, to the south by Remainder of Portion 1 of Klipfontein No. 60-JQ and to the west by the Mogwase township.

Zone A, is bordered to the north by the Main road, to the east by the R105, to the west by zone B and 2 Olivenboom 62 JQ and to the south by zone B.

Zone B, 1 Klipfontein 60 JQ, is bordered to the north by the Mogwase unit 4 and 5 and 2 Olivenboom 62 JQ, to the east by zones A, to the west by Mogwase township and to the south by zone C and D.

Zone C and D, 6 Klipfontein 60 JQ is bordered to the north by zone B, to the east by the R105, to the west by Mogwase township and to the south by Remainder of Portion 1 of Klipfontein No. 60-JQ.

A mixed use land area, 2 Olivenboom 62 JQ, is bordered to the north by the Main road, to the south east by zone A and to the west by Mogwase township unit 5.

A table listing the erf numbers is attached hereto as Annexure A and a map showing the boundaries of the Special Economic Zone is attached hereto as Annexure B.

Members of the public must submit their comments or objections to this notice within 30 days from the date of publication of this notice.

Comments may be sent to:

Mr Thami Klassen

Department of Trade and Industry (the dti)

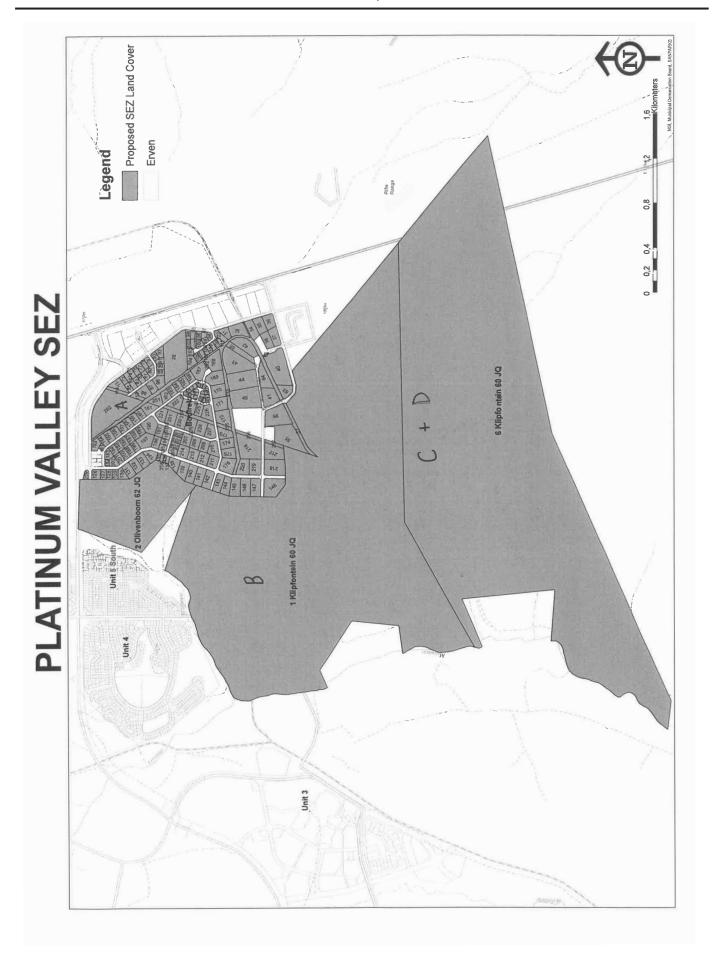
the dti Campus

77 Meintjies Street

Sunnyside, Pretoria, 0002

Tel: (012) 394 1543

Email: TKlassen@thedti.gov.za


Dr Rob Davies, MP

Minister of Trade and Industry

_ April 2019

ANNEXURE A

Zone	Land use	Erf No.	Extent (ha)
Α	Mineral beneficiation		96.9
В	Renewable energy	270-302	312
		304-445	
		472-540	
		588-593	
С	Mining equipment and	544-576	225
	machinery	618-776	
		780-805	
D	Agro-processing	594-598	271
		777-779	
		806-925	
Remaining	Mixed Use	446-471	
land		577-587	
TOTAL			1175

DEPARTMENT OF TRADE AND INDUSTRY

NO. 654 10 MAY 2019

- By virtue of the powers vested me in terms of the Special Economic Zones Act No. 16 of 2014 ("SEZ Act"), I, Dr Rob Davies, Minister of Trade and Industry, hereby give notice that -
 - (a) the OR Tambo International Airport Industrial Development Zone was declared an industrial Development Zone (IDZ) in Notice No, 152 of 2002 (Government Gazette No. 23084 of 1 February) which was promulgated in terms of Regulation 3 of the Industrial Development Zone Regulations (Government Gazette No. 21803 of 1 December 2000) made in terms of the Manufacturing Development Act No. 187 of 1993;
 - (b) section 39(2) of the Special Economic Zones Act No. 16 of 2014 ("the SEZ Act"), provides as follows:
 - "(2) Any designation of an industrial development zone under the IDZ Regulations which is in force immediately before this Act comes into operation, remains in force and must be regarded as a designation of a Special Economic Zone under this Act. "; and
 - (c) by virtue of the automatic legal effect of section 39(2) of the SEZ Act, the OR Tambo International Airport Industrial Development Zone must, as from the date of commencement of the SEZ Act, be regarded as a Special Economic Zone under the SEZ Act.
- 2. Amendments to the OR Tambo International Airport SEZ land areas and Incorporation of the Impala Precinct as part of the SEZ

Amendments to the OR Tambo International Airport SEZ land areas

A total land area of 50.73 ha is hereby designated as the OR Tambo International Airport Special Economic Zone (which shall continue to be known as the OR Tambo International Airport Industrial Development Zone). The SEZ land area consists of the OR Tambo International Airport Precinct (Zone A, B, C and D) (37.02 ha) and the Impala Precinct (Zone E) (13.71ha).

The OR Tambo International Airport Precinct is situated on the north east boundary of the OR Tambo International Airport, on the east of Kempton Park central business district within the Ekurhuleni Metropolitan Municipality. It is bounded by Great North Road to the east, Atlas Road to the west with Elgin Road bypassing the site. To the north of the site is the R21 Freeway and directly to the west of the properties is the OR Tambo International Airport.

Zone A, comprising of portions 29, 38 and 108 of the Farm Witkoppie No.64 -IR (to be consolidated, subdivided and be given a new portion number), is bounded by the Great North Road to the east, R21 to the north, Atlas Road to the west and Elgin Street to the south.

Zone B, comprising of portions 38 and 108 of the Farm Witkoppie No.64 -IR (to be consolidated, subdivided and be given a new portion number) is bounded by Atar Street to the west, the Great North Road to the east, Elgin Street to the north and Bonero Park Extension 1 to the south.

Zone C, comprising of portion 38 of the Farm Witkoppie No. 64-IR, is bounded by Atar Street to the east, Elgin Street to the north, Atlas Road to the east and Bonero Park Extension 1 to the south.

Zone D, comprising of the remainder of portion 282 of the Farm Witkoppie No. 64-IR, is bounded by Elgin Street to the north, proclaimed road (in terms of Premier's Notice 11 of 2001) to the west, portion 30 of the Farm Witkoppie No. 64-IR to the east and Bonero Park Extension 1 to the south.

The following land areas are hereby undesignated and excluded from the OR Tambo International Airport SEZ

The whole of Precinct A, 333 ha, which is bounded by the R21 Freeway to the west, N12 Freeway to the south, OR Tambo International Airport to the north and Trichards Road to the east. There are eighty two (82) land parcels identified within this precinct.

The whole of Precinct B, 280 ha, which is bounded by Atlas Road to the east, Impala Park to the south, OR Tambo International Airport to the west and Bonero Park to the north. Ten land (10) parcels are identified in this precinct.

The whole of Precinct C, 76.18 ha, which is bounded by Great North Road to the east, Bonero Park to the south, R21 traversing the site to the north and OR Tambo International Airport to the east. Part of this site, of 37.02 ha, is now being proclaimed in this gazette.

Incorporation of the Impala Precinct into the OR Tambo International Airport SEZ

The Impala Precinct is situated north of Springs central business district, south of Geduld railway station and directly east of the Impala Platinum refineries.

Zone E, a portion of portion 133 of the Farm Geduld No. 123-IR, is bounded by East Geduld Road to the East, Cowles Street to the south, a railway line to the north and portion 254 of the farm Geduld No. 123-IR to the West.

A table listing the erf numbers and a map showing the boundaries of the Special Economic Zones is attached hereto as Annexure A.

Members of the public may submit their comments to this notice within 30 days from the date of its publication. Comments may be sent to:

Mr Thami Klassen
Department of Trade and Industry (the dti)
the dti Campus
77 Meintjies Street
Sunnyside, Pretoria, 0002
Tel: (012) 394 1543

Email: SEZenquiries@thedti.gov.za

Dr Rob Davies, MP

Minister of Trade and Industry

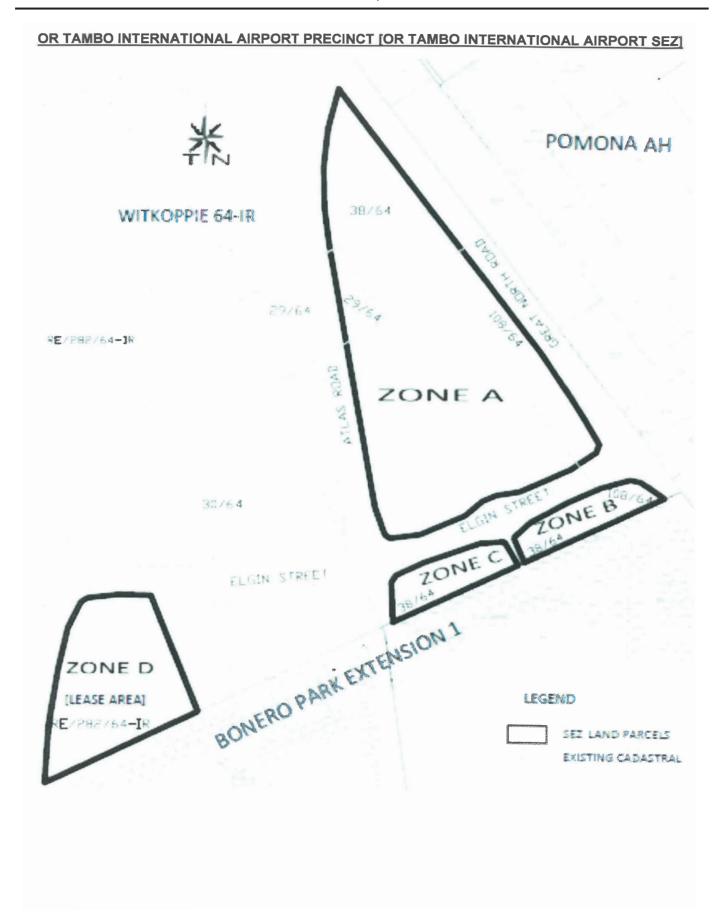
___March 2019

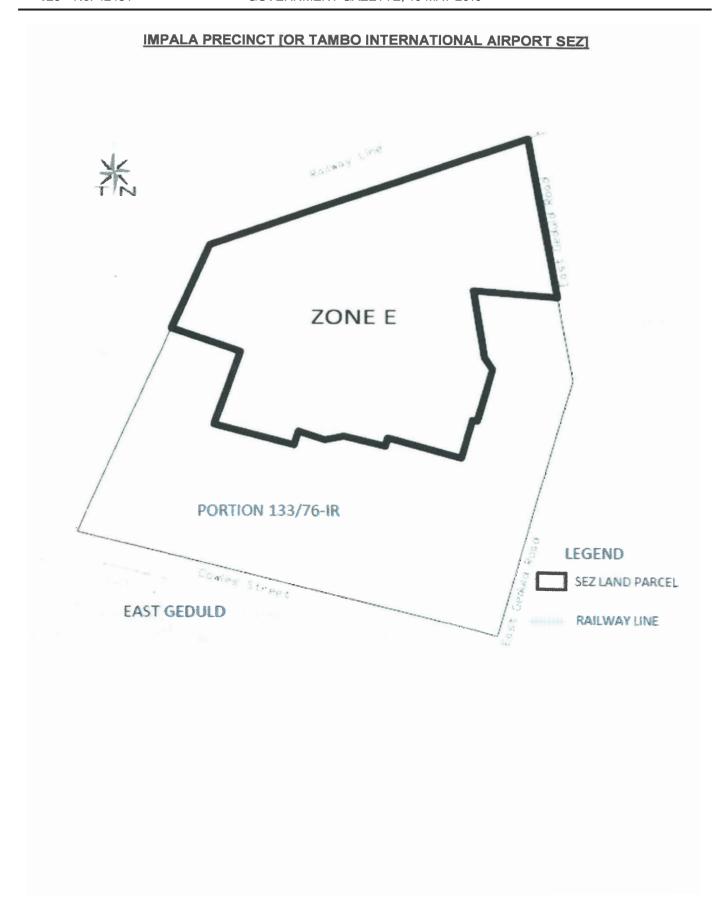
ANNEXURE A: TABLE WITH ERF NUMBERS, OR TAMBO INTERNATIONAL AIRPORT SPECIAL ECONOMIC ZONE

OR TAMBO INTERNATIONAL AIRPORT PRECINCT

			ZONE A		
ERF NO.	EXTENT [HA]	ZONING	TITLE DEED NO.	SG NO.	LAND OWNER
Portion 38 of the Farm Witkoppie 64-IR	20.84	Agricultural	T143772/2007	A2340/1998/; A440/1987; 1717/2017; 1718/2017	Gauteng Provincial Government
Portion 29 of the Farm Witkoppie 64-IR	1	Agricultural	T4272/2014	A708/2014; 1713/2017; 1714/2014	Gauteng Provincial Government
Portion 108 of the Farm Witkoppie 64-IR	3.62	Agricultural	T143772/2007	A1737/1954; 1719/2017	Gauteng Provincial Government
EXTENT	25.46				

			ZONE B		
ERF NO.	EXTENT [HA]	ZONING	TITLE DEED NO.	SG NO.	LAND OWNER
Portion 38 of the Farm Witkoppie 64-IR	1.43	Agricultural	T143772/2007	A2340/1998/; A440/1987; 1717/2017; 1718/2017	Gauteng Provincial Government
Portion 108 of the Farm Witkoppie 64-IR	0.60	Agricultural	T143772/2007	A1737/2014; 1713/2017; 1714/2017	Gauteng Provincial Government
EXTENT	2.03				


			ZONE C		
ERF NO.	EXTENT [HA]	ZONING	TITLE DEED NO.	SG NO.	LAND OWNER
Portion 38 of the Farm Witkoppie 64-IR	2	Agricultural	T143772/2007	A2340/1998/; A440/1987; 1717/2017; 1718/2017	Gauteng Provincial Government
EXTENT	2				


ZONE D

ERF NO.	EXTENT [HA]	ZONING	TITLE DEED NO.	SG NO.	LAND OWNER
Portion 282 of the Farm Witkoppie 64-IR	7.53	Transportation	T143772/2007	A2340/1998/; A440/1987; 1717/2017; 1718/2017	Airports Company South Africa
EXTENT	7.53				

IMPALA PRECINCT [OR TAMBO INTERNATIONAL AIRPORT SEZ]

			ZONE E		
ERF NO.	EXTENT [HA]	ZONING	TITLE DEED NO.	SG NO.	LAND OWNER
Portion 133 of the Farm Geduld 123- IR	13.71	Industrial 1	T67314/1993	LG No. A7248/1992	Impala Platinum Limited
EXTENT	13.71				

DEPARTMENT OF WATER AND SANITATION

NO. 655

10 MAY 2019

NATIONAL WATER ACT, 1998 (ACT NO.36 OF 1998)

PROPOSED CLASSES OF WATER RESOURCE AND RESOURCE QUALITY OBJECTIVES FOR THE BERG CATCHMENT

I, Gugile Nkwinti, in my capacity as Minister of Water and Sanitation and duly authorised in terms of Section 13(4) of the National Water Act, 1998 (Act No. 36 of 1998) hereby publish, the notice for the proposed classes of water resources and the proposed resource quality objectives for the Berg Catchment.

Any person who wishes to submit written comments with regard to the proposed classes of water resources and the proposed resource quality objectives should submit the comments within 60 days from the date of publication of this Notice to:

Director: Water Resource Classification Attention: Ms Lebogang Matlala Department of Water and Sanitation Ndinaye Building 5046 178 Francis Baard Street Private Bag x 313 Pretoria 0001

Facsimile: 012 336 6712 Email: mat/alal@dws.gov.za

MR NKWINTI GE (MP)

MINISTER OF WATER AND SANITATION

DATE: 22/02/2019

SCHEDULE

DESCRIPTION OF THE WATER RESOURCE

The proposed water resource classes and resource quality objectives are determined for all or part of every significant water resource as set out below:

Water Management Area: Berg-Olifants Water Management Area

Drainage Region: G1, G2 Secondary Drainage Region and G40A Quaternary Drainage Region

River(s): The Berg River is the largest river in the study area, which also includes a

number of smaller catchments within the City of Cape Town Metropolitan area such as the Diep, Kuils, Eerste, Lourens, Sir Lowry's, Steenbras, as well as various small catchments on the Cape Peninsula and along the West Coast.

A. PROPOSED WATER RESOURCE CLASSES AS REQUIRED IN TERMS OF SECTION 13(4)(a)(i)(aa) OF THE NATIONAL WATER ACT, 1998

- i. The proposed water resource classes for the Berg Catchment are listed in Table 1 according to the overall class per integrated unit of analysis (IUA), indicated in Figure 1.
- ii. IUAs are classified as either Class I: indicating high environmental protection and minimal utilisation; Class II indicating moderate protection and moderate utilisation; and Class III indicating sustainable minimal protection and high utilisation.
- iii. Table 1 provides the IUA, the recommended water resource class and its respective catchment configuration. The catchment configuration consists of a number of biophysical nodes representing river reaches or river resource units (RUs). The target ecological category (TEC) to be achieved or maintained for each RU in the IUA is provided.
- iv. It is important to note that additional existing geographically defined areas of specific ecological importance for water resources such as protected areas (e.g. Table Mountain National Park), critical biodiversity areas (CBAs), national freshwater environmental protection areas (NFEPAs) and the strategic water source areas (SWSA) should also be considered in terms of the recommended resource classes as these would indicate areas of specific importance that should be managed in a higher resource class (e.g. Class I) than would be the case for the average of all resource units across the IUA (e.g. in a Class II).

B. RESOURCE QUALITY OBJECTIVES OF WATER RESOURCES AS REQUIRED IN TERMS OF SECTION 13(4)(a)(i)(bb) OF THE NATIONAL WATER ACT, 1998

- i. Resource Quality Objectives (RQOs) are defined for prioritised RUs for each IUA in terms of water quantity, habitat and biota, and water quality. Prioritised RUs are indicated in Figure 1.
- ii. Table 2 to Table 10 provide the RQOs for RIVERS in priority RUs.
- iii. Table 11 to Table 17 provide the RQOs for ESTUARIES in priority RUs.
- iv. Table 18 provides the RQOs for DAMS in priority RUs
- v. Table 19 provides the RQOs for GROUNDWATER in priority RUs.
- vi. RQOs will apply from the date signed off as determined in terms of Section 13(1) of the National Water Act, 1998, unless otherwise specified by the Minister.

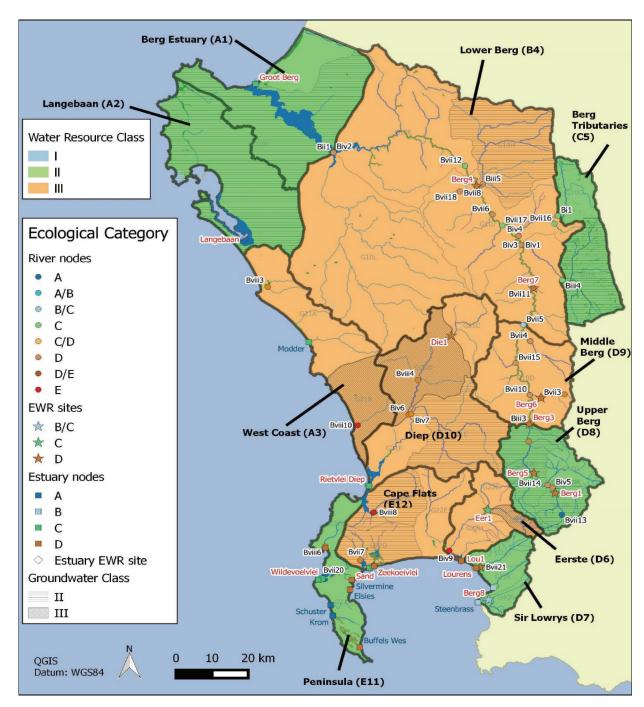


Figure 1: Proposed Water Resource Classes for the Berg Catchment

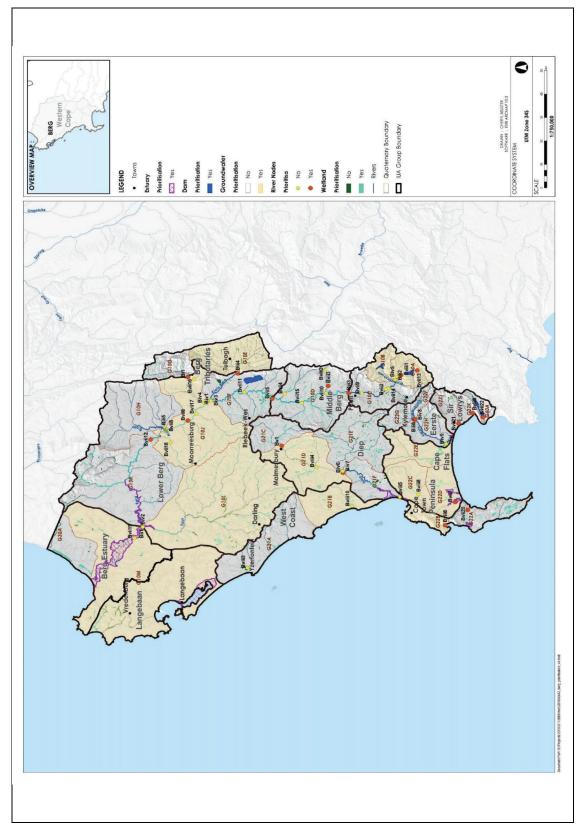


Figure 2: Proposed Priority Resource Units for the Berg Catchment

c

Table 1: Summary of recommended Water Resource Classes for each IUA and the Target Ecological Category (TEC) for priority biophysical river and estuary nodes

Integrated Unit of Analysis (IUA)	Water Resource Class for IUA	Quaternary Catchment	RU	Resource Name	Biophysical Node Name	TEC	% nMAR*
A1 Berg Estuary	=	G10M	A1-E01	Berg (Groot)	Bxi1	ပ	52
A2 Langebaan	=	G10M	A2-E04	Langebaan	Bxi3	A	N/A
		G10A	D8-R01	Berg	Bvii13	A	86
D8 Upper Berg	=	G10A	D8-R02	Berg	Pill1	၁	27
		G10C	E0X-8Q	Berg	Biii3	Q	53
		G10C	D9-R04	Pombers	Bviii11	၁	366
D9 Middle Berg	≡	G10D	50X-6Q	Kromme	Bvii3	Q	89
		G10D	90X-6Q	Berg	Bvii5	Q	49
De Dose Teibudos	Π	G10E	C5-R07	Klein Berg	Biii4	၁	82
Co perg illibutaries	=	G10G	80X-SO	Vier-en-Twintig	Pi4	B/C	23
- FO	I	G10J	B4-R09	Berg	Bvii6	Q	52
b4 Lower berg		G10K	B4-R10	Berg	Bvii12	D	51
		G21D	D10-R11	Diep	Bv1	Q	99
D10 Diep	≡	G21D	D10-R12	Diep	Biv6	D	89
		G21F	D10-E03	Rietvlei/ Diep	Bxi7	С	78
		G22B	E11-R13	Hout Bay	Bviii6	Q	26
E11 Peninsula	=	G22A	E11-R14	Silvermine	Bvii20	၁	86
		G22A	E11-E04	Wildevöelvlei	Bxi14	C	107
		G22D	E12-R15	Keysers	Pvii7	Q	93
E12 Cape Flats	≡	G22K	E12-E05	Zandvlei	Bxi9	C	93
		G22K	E12-E05	Zeekoevlei	Bxi9	O	N/A
		G22F	D6-R16	Eerste (Jonkershoek)	9!!!B	၁	93
D6 Eerste	≡	G22G	D6-R17	Klippies	Biv8	D	22
		G22H	D6-E06	Eerste	Bxi3	D	06
		G22J	D7-R18	Lourens	Bvii21	D	114
D7 Sir Lower's	=	G22K	D7-R19	Sir Lowry's Pass*	Bviii9	ပ	84
C C C C C C C C C C C C C C C C C C C	=	G40A	D7-R20	Steenbras	Bvii22	B/C	81
		G22J	D7-E07	Lourens	Bxi4	٥	82

*Note: This is based on the estimated/simulated flow requirement in the system to meet downstream TECs as well as with current demands. Note that this will differ from the minimum flow requirement to meet the EWR at any given node. In some cases, the flow is above 100% of natural due to the impact of releases to meet downstream demands.

.

Table 2: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis D8 Upper Berg

	RQO Numeric	Months Oct Nov Dec Jan Reb Mar Apr Mar Apr Lun Jun Jun Sep	uoilliu	Mainte flows (I cubic m High High 0.0440 0.000 0	< 0.025 milligrams per litre (50th percentile)	≤ 0.70 milligrams per litre (50th percentile)	30 milliSiemens/metre EC (95th percentile)	$5.0 \le pH \le 7.0$ (5th and 95th percentiles)	DO ≥ 8 milligrams per litre (5th percentile)	N/A		95%tile ≤ 130 cfu/100ml E coli / Faecal coliforms	0.860 > D50 > 0.275	> 62% = C category	No exotic plant species.	No terrestrial woody species.		Cover 5-25%		Cover 25-50%	2000	No reeds	Cover < 5%.	Cover < 10%.
-	RQO Narrative		Flows sufficient to maintain the river in an A category		River nutrient levels must be ≤	maintained in an oligotrophic scondition.	rations need to be at levels that do sy affect aquatic		dissolved oxygen are important for the maintenance of Di ecosystem health.	d catchment, no oout toxic	substances	Concentrations of waterborne pathogens should be maintained in an Ideal 9! category for full contact recreation	Sand particle size	Vegetation condition	Z	Z		ne cover	abundance	Č	5	Z		Lower zone cover abundance
	Indicator		Maintenance low flows Maintenance high		Phosphate (PO ₄ -P)	Total inorganic nitrogen (TIN)	uctivity	pH range	Dissolved oxygen	N/A		E coli	D50	VEGRAI level 3 score.	Exotic species	Terrestrial woody		Indigenous riparian		Non-woody indigenous	species	Reeds		Terrestrial woody species
	Sub-component		Low flows f High flows			Nutrients	Salts	Δ.	System variables	Toxins		Pathogens	Geomorphology		ш	_	S	_		vegetation	S		Ш	<u> </u>
	Component		Quantity						Quality										Habitat					
	TEC									⋖														
	Biophysical Node Name									Bvii13														
	Resource Name									g River	jə Ş	8												
	ß									8-ВОТ	DE													
	Quaternary Catchment									AOT	Ð													
	Class									II														
	INA								3.	bber Ber	dη	D8												

Biophysical TEC Component Sul		Sul	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Indigenous riparian woody species		Cover 25-60%
			,	Non-woody indigenous species		Cover 25-50%
				Reeds		No reeds
				Exotic species		Cover < 10%.
				Terrestrial woody		Cover = 15%.</td
			, <u> </u>	ous riparian	Upper zone cover abundance	, , , , , , , , , , , , , , , , , , ,
				woody species		COVER 25-50%
				Non-woody indigenous species		Cover 40-70%.
				FRAI score	Fish condition	> 80% = B category
			_	Number of indigenous		Three species present: Sandelia capensis, Galaxia
ï	ï	-		fish species.		zebratus and Pseudobarbus burgi
LISIA	IISII	LISII		Sandelia capensis		FROC = 5
				Galaxias zebratus	Indigenous species richness	FROC = 5
; ;				gi		FROC = 5
000	50		_	Exotic fish species		No increase in the number of exotic fish present: Onchorhyncus $mykiss$ (FROC = 5)
			_	MIRAI score	Macroinvertebrate condition	> 78 % = B/C category
	+0.40	tordottonal		SASS5 and ASPT score	SASS scores	SASS5 score >180, ASPT ≥ 7.2.
				Number of families	Diversity of invertebrate community	>/= 23 families, at an abundance of A to C.
						Sonths Oct Nov Dec Jan Seb Mar Mar Jun Jun Jun Seb
Low flows Quantity		Low flows			Flows sufficient to maintain	noilli
	2 X X X X X X X X X X X X X X X X X X X			Maintenance nign flows		Mainferm work of more cubic more cubic more cubic more more more more more more more more
				Phosphate (PO ₄ -P)	Nutrient levels must be	< 0.025 milligrams per litre (50th percentile)
Nutrients	Nutrients	Nutrients		Total inorganic nitrogen (TIN)	maintained in the river at an oligotrophic condition.	≤ 0.70 milligrams per litre (50th percentile)
Quality Salts		Salts		Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤30 milliSiemens/metre (95th percentile)
	-	100		pH range	pH, temperature, and	4.5 ≥ pH ≤ 7.5 (5th and 95th percentiles)
system	system	system	system variables	nperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature

CONTINUES ON PAGE 130 - PART 2

Government Gazette Staatskoerant

Vol. 647

10 May Mei 2019

No. 42451

Part 2 of 2

N.B. The Government Printing Works will not be held responsible for the quality of "Hard Copies" or "Electronic Files" submitted for publication purposes ISSN 1682-5843

42451

AIDS HELPLINE: 0800-0123-22 Prevention is the cure

		Resource	Biophysical						
S.	S.	me		TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
							Dissolved oxygen	for the maintenance of ecosystem health.	DO ≥ 8 milligrams per litre (5th percentile)
								Concentrations of waterborne pathogens should be	
						Pathogens	Escherichia coli	_	≤ 130 counts/100ml (95th percentile)
								category for full contact	
								recreation.	
						Geomorphology	D50	Sand particle size	0.521 > D50 > 0.319
							VEGRAI level 3 score.	Vegetation condition	> 62% = C category
							Exotic species		No exotic plant species.
							Terrestrial woody		No terrestrial woody species.
							species		
							Indigenous riparian	Marginal zone cover	Cover < 10%.
							Non-woody indigenous		Cover 50-75%.
					1,5;	2	species		
						ş	Reeds		No reeds
						vegetation.	Exotic species		Cover < 5%.
							Terrestrial woody		Cover < 10%.
							species		
							Indigenous riparian woody species	Lower zone cover abundance	Cover 50-75%.
							Non-woody indigenous		Cover 25-50%.
							species		
							Reeds		No reeds
								Fish condition	> 62% = C category
							Number of indigenous		One charies present: Sandolia canonsis
						Fich	fish species.		סוב אליכובי לו כזכווי. סמומכוות בתליכוזי
							Sandelia capensis	Indigenous species richness	FROC = 5
					Biota		Exotic fish species		No increase in the number of exotic fish present: <i>Micropterus dolomieu</i> (FROC = 5)
							MIRAI score	Macroinvertebrate condition	> 62%= C category
						ot character of the cha	SASS5 and ASPT score	SASS scores	SASS5 score >134, ASPT ≥ 6.1.
							Number of families	Diversity of invertebrate	>/= 21 families, at an abundance of A to C.
	_								

	dəς	8.112	000.0					a)										
	₿uĄ	10.102	000.0					ţ		_		(e)						
	lut	10.102	10.525					era	<u></u>	ie)	ile)	ij						
	unr	977.6	10.525	ie)	e e	ļ ļį	es)	ш	i je	ent	ent	ë	-	-				
	May	285.8	000.0	< 0.075 milligrams/litre (50th percentile)	1.75 milligrams/litre (50th percentile)	< 55 milliSiemens/metre (95th percentile)	$6.5 \le pH \le 8.5$ (5th and 95th percentiles)	r E	DO≥6 milligrams per litre (5th percentile)	< 0.073 milligrams per litre (95th percentile)	< 0.079 milligrams per litre (95th percentile)	≤ 0.0013 milligrams per litre (95th percentile)	/ / / / / / / / / / / / / / / / / / /					
ی	1qA	898.4	424.4	erc	rce	per	Se	ate	per	유	th p	5th	9	,				
RQO Numeric	Mar	1.612	000.0	h p	be	Ę	be	, ¥	2t	951	951	6)	ğ	<u>.</u>				
<u> </u>	Feb	1.456	000.0	50t	O t P	(95	2th	ie.	e	e.	re (itre	<u>-</u>					
0	Jan	1.612	1.721	e	(2)	tre	9 0	m	±	븓	ë	er	70)				
õ	Dec	1.612	000.0	₹	litre	m.	an	٦	per	be	be	s p	<u> </u>			ory		>
	voM	2.080	000.0	ms	l/su	/su	2th	į	Jus	ms	ms	an.	5			teg		gor
	toO	508.2	000.0	gra	lan	me	.5	9	grai	gra	igra	E	7 2 4	2		ca		ate
	ω.	МОЛ	ЯЗіН	iii	iii	iSie	∞ VI	-en		Ē	Ē	Ē	2	3		> 38% = D/E category		> 58% C/D category
	Months	tres)		75 r	E	<u> </u>	표	£	9	73.	79.)13)		II		5
	Ĕ	oiduo n		0.0	1.7	55 r	VI	C	۸۱	0.0	0.0	9.0	5			38%		28%
		swoll eans	Maintens	VI	VI		9.	t 2°	<u> </u>			VI	`	1	+	^	4	^
RQO Narrative		Flows sufficient to maintain the river in a D category		Nutrient levels must be	maintained in the river at a mesotrophic or better condition.	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	pH, temperature, and	dissolved oxygen are important 2°C difference from ambient water temperature	for the maintenance of ecosystem health.		loxicity levels must not pose a	الالاحقاد أن عظمعانات حدث المعادد	Concentrations of waterborne pathogens should be	category for intermediate	Sediment particle size	Vegetation condition		Fish condition
Indicator		Maintenance low flows Maintenance high	flows	Phosphate (PO ₄ -P)	Total inorganic nitrogen (TIN)	Electrical conductivity (EC)	pH range	Water temperature	Dissolved oxygen	Ammonia	Atrazine	Endusulfan	בירים ביותטיים אינים אינים מינים אינים אי		D16. D50. D84	VEGRAI level 3 score.		FRAI score
Sub-component		Low flows High flows			Nutrients	Salts		System syriables	oystelli vallables		Toxins		0 ++c Q		Geomorphology	Riparian	vegetation	Fish
ent		>-																
Component		Quantity						1	Quality							Habitat		Biota
TEC			۵															
Biophysical Node Name							Biii3											
Resource Name						liver	rg F	əg										
S.			D8-R03															
Quaternary Catchment			9100															
Class							II											
ΙNΑ		D8 Upper Berg																

α

Table 3: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis D9 Middle Berg

Quantity Low flows Maintenance low flows Geomorphology Gal score - Habitat Riparian Vegetation Blota Invertebrates Minitenance low Maintenance low flows Guality Countity Low flows High flows Maintenance low Maintenance low flows Interest Total inorganic Cotal interest	IUA	Class	Quaternary	ary RU		Resource	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
Couglity Low flows Maintenance low flows Arrazine Couglity Byiii11 C Quality High flows Genorphology GAl score-Habitat Riparian Waintenance low Maintenance light flows Couglity Byiii1 C Quality Riparian Water temperature Escherichia coli Comorphology GAl score-Habitat Riparian Welchallevel 3 score. Biota Invertebrates MilkAl score flows Maintenance low Maintenance low flows Milk flows Maintenance low flows f													Months Oct Nov Dec Jan Feb Mar Apr Mar Lul Iul Sep
Figure 1									Quantity	Low flows High flows	Maintenance low flows Maintenance high	Flows sufficient to maintain the river in a C category	noillin
Electrical conductivity Degree of Marie Electrical conductivity Degree of Marie Electrical conductivity Electrical conductivity Electrical conductivity Electrical conductivity (EC) Couglity Salts Electrical conductivity (EC) Degree of Marie Temperature Dissolved oxygen Ammonia Toxins Endusulfan Findusulfan Blota Invertebrates Maintenance low Maintenance low Maintenance low Maintenance low Maintenance low Maintenance ligh High flows Maintenance high High flows Maintenance high High flows Mutrients Total Inorganic Total Inorganic Total Inorganic Amanonia Maintenance low Maintenance low Maintenance low Total Inorganic Total I										0	flows		Mainte Hows (n cubic m cubic m cubic m cubic m retard m r
Electrical conductivity C Ouality Salts Electrical conductivity C Ouality Ouality C Ouality								-			Phosphate (PO ₄ -P)	Nutrient levels must be	< 0.025 milligrams/litre (50th percentile)
Electrical conductivity Bolts Bolts Couglity Couglit										Nutrients	Total inorganic nitrogen (TIN)	maintained in the river at an oligotrophic condition.	< 0.70 milligrams/litre (50th percentile)
E GG	gerg					\6t				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	30 milliSiemens/metre (95th percentile)
Country System variables Water temperature	a əll	ı	Э0	705	+01	iЯ s.		(pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
Quality Trains Arazine Ammonia Toxins Arazine Endusulfan Flatusulfan Flatusulf	obiN	П	210	1-6C	1-66	ıpeı	BVIIII			System variables	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
Toxins Arrazine Toxins Atrazine Endusulfan Frachogens Escherichia coli Geomorphology GAI score- Habitat Riparian VEGRAI level 3 score. Biota Invertebrates MIRAI score Biota Invertebrates Mirai flows Biota High flows flows Cuantity High flows Maintenance high flows Auality Nutrients Intellinorganic	N 60			1	1	mod			Quality	Oystelli Validales	Dissolved oxygen	for the maintenance of ecosystem health.	DO ≥ 8 milligrams litre (5th percentile)
Toxins Atrazine Findusulfan Geomorphology GAI score Vegetation Vegetation Nitrients Maintenance low flows Findusulfan Findusul											Ammonia	Toxicity levels must not nose a	< 0.073 milligrams per litre (95th percentile)
Endusulfan Pathogens Escherichia coli Geomorphology GAI score- Habitat Riparian VEGRAI level 3 score. Vegetation VEGRAI level 3 score. Rijota Invertebrates MIRAI score Biota Invertebrates Miral score Ouantity High flows Maintenance high flows Augustity High flows Invertebrate (Pox-P) Ouality Nutrients Total inorganic Introgen (TIN)										Toxins	Atrazine	threat to adjustic ecosystems	≤ 0.079 milligrams per litre (95th percentile)
Pathogens Escherichia coli											Endusulfan	سادهد در مطرمونات حدري العادي	≤ 0.0013 milligrams per litre (95th percentile)
Habitat Riparian VEGRAI level 3 score.										Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 600 counts/100ml (95th percentile)
Habitat Riparian VEGRAI level 3 score. Biota Invertebrates MIRAI score Maintenance low flows flows flows Cuantity High flows Maintenance high flows Countity Autrients Total inorganic introgen (TIN)										Geomorphology	GAI score -	Geomorphological condition	> 38% D/E category
Biota Invertebrates MIRAI score Maintenance low Cuantity Low flows flows By B								_	Habitat	Riparian vegetation	VEGRAI level 3 score.	Vegetation condition	> 22% = E category
Maintenance low flows control flows flows flows flows flows by Evidence bigh flows by Evidence flows by Evidence flows f								. ш	Siota	Invertebrates	MIRAI score	Macroinvertebrate condition	> 80% = B category
Augustity Constitution Countries Cou													Aonth May Cot Now Dec Jen May Mar
High flows Maintenance high flows Edge 60 Edge	gre					.er			c i	Low flows	Maintenance low flows	Flows sufficient to maintain	əidr
E Bvii3 D Flows C D9 E P Phosphate (PO ₄ -P) Quality Nutrients Total inorganic nitrogen (TIN)	e Be		а	50		viЯ :			Qualitity	High flows	Maintenance high	the river in a D category.	tress
Quality Nutrients Total inorganic nitrogen (TIN)	IbbiM 6	III	P 010	D о -ві	N-60	cromme	Bvii3	۵			flows		instrieM billim) dail dail dail dail dail dail dail dail
Nutrients Total inorganic nitrogen (TIN)						I					Phosphate (PO ₄ -P)	Nutrient levels must be	≤ 0.075 milligrams per litre (50th percentile)
								-	Quality	Nutrients	Total inorganic nitrogen (TIN)	maintained in the river in an mesotrophic condition.	≤ 1.75 milligrams per litre (50th percentile)

Salts Electrical conductivity Salts Electrical conductivity Salts Cardior Burst Ca	IUA	Class	Quaternary Catchment	2	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
Pit Tange Pit									Salts	Electrical conductivity (EC)	Salt concentrations must be maintained in an Ideal category.	≤ 30 milliSiemens/metre (95th percentile)
System variables Ammonia Amm										pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
Discolved oxygen									System variables	Water temperature	dissolved oxygen are important	2°C difference from ambient water temperature
Ammonia Ammonia Ammonia Ammonia Amazine Endusulfan Endu									oystelli vallables	Dissolved oxygen	for the maintenance of ecosystem health.	DO ≥ 8 milligrams per litre (5th percentile)
Toxins Atrazine Fraduculfan Fr										Ammonia	-	< 0.073 milligrams per litre (95th percentile)
Escherichia coli Riparian									Toxins	Atrazine	Loxicity levels must hot pose a	< 0.079 milligrams per litre (95th percentile)
Escherichia coli Escher										Endusulfan	tnreat to aquatic ecosystems.	< 0.0013 milligrams per litre (95th percentile)
Escherichia coli Geomorphology GAI score-Habitat Riparian VEGRAI level 3 score. Biota Risparian VEGRAI level 3 score. Biota Risparian VEGRAI level 3 score. Biota Risparian VEGRAI level 3 score. Aduantity Relatione Phosphate (Po _x -P) Augustity Relatione Coli Invertebrates MIRAI score Low flows Maintenance low flows Augustity Augustity Relation Coli Invertebrate Milation Coli Invertebrate Maintenance low flows Augustity Relation Coli Invertebrate Milation Coli Invertebrate Maintenance low flows Augustity Augustity Coli Invertebrate Milation Coli I											Concentrations of waterborne pathogens should be	
E D D D D D D D D D D D D D D D D D D D									Pathogens	Escherichia coli	maintained in an Acceptable category for intermediate	< 2500 counts/100ml (95th percentile)
Habitat Riparian Riparian Riparian RERAI score- Biota Fish RAI score Fish RAI score Fish RAI score Fish RAI score Maintenance low flows Quantity High flows Maintenance high flows Ouantity Phosphate (PO ₄ -P) Autrients Total inorganic Ouality Salts Electrical conductivity Ouality System variables Dissolved oxygen Atrazine											contact recreation.	
Habitat Riparian VEGRAI level 3 score. Biota Fish RAI score Invertebrates MIRAI score Maintenance low flows High flows Maintenance high flows Chantity High flows Maintenance high flows Chantity Salts (EC) Change Bevils D Challity Salts (EC) Change Bevils D Challity Salts (EC) Change Bevils D Challity Salts (EC) Dissolved oxygen Ammonia									Geomorphology	GAI score -	Geomorphological condition	> 38% = D/E category
Biota Fish FRAI score									Riparian vegetation	VEGRAI level 3 score.	Vegetation condition	> 18% = F category
Coughity Coughing									Fish	FRAI score	Fish condition	> 22% = E category
Administrative Low flows High flo									Invertebrates	MIRAI score	Macroinvertebrate condition	> 78% = B/C category
Administration Action (1974) Maintenance low flows flows flows Maintenance high flows Flows Flows Maintenance high flows Flows Flows Maintenance high flows Flow												Jan Feb Mar
High flows Maintenance high flows High flows High flows flows F								Ollantity	Low flows	Maintenance low flows	Flows sufficient to maintain	Low (5) 2.585 (7
E D D D D D D D D D D D D D D D D D D D									High flows	Maintenance high flows	the river in a D category	million or matter or material or or material or
Electrical conductivity Autrients Autrients Autrients Total inorganic nitrogen (TIN) Salts Electrical conductivity EC) Quality Quality Ammonia Toxins Ammonia												0 ε τ 0 S 0 0 0 7 0 0 0 0 H
Electrical conductivity Cotal in organic Cota	RB L									Phosphate (PO ₄ -P)	Nutrient levels must be	< 0.125 milligrams/litre (50th percentile)
Salts Salts (EC) Quality Quality Ammonia Toxins Salts Electrical conductivity (EC) PH range Water temperature Dissolved oxygen Ammonia	əg əlp	11	10 D	90A-	River	Bviis	_		Nutrients	Total inorganic nitrogen (TIN)	maintained in the river at a eutrophic or better condition.	≤3.00 milligrams/litre (50th percentile)
System variables Water temperature Dissolved oxygen Toxins Ammonia Atrazine	piM 60		19	·60	Berg				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present state levels.	95%tile ≤ 55 milliSiemens/metre EC
Water temperature Dissolved oxygen Ammonia								Juality		pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
Dissolved oxygen for the maintenance of ecosystem health. Ammonia Toxicity levels must not pose a threat to aquatic ecosystems.									System variables	Water temperature	dissolved oxygen are important	2°C difference from ambient water temperature
Ammonia Toxicity levels must not pose a Atrazine threat to aquatic ecosystems.										Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)
threat to aquatic ecosystems.									Toxins	Ammonia	Toxicity levels must not pose a	≤ 0.073 milligrams per litre (95th percentile)
										Atrazine	threat to aquatic ecosystems.	< 0.079 milligrams per litre (95th percentile)

					•	
				Endosulfan		s 0.0013 milligrams per litre (95th percentile)
			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for intermediate contact recreation.	95%tile ≤ 2500 cfu/100ml Escherichia coli
			Geomorphology	D50	Sand particle size	0.714 > D50 > 0.251
				VEGRAI level 3 score.	Vegetation condition	> 52% = D category
				Exotic species		No exotic plant species.
				Terrestrial woody species		No terrestrial woody species.
				Indigenous riparian woody species	Marginal zone cover abundance	Cover 50-75%.
				Non-woody indigenous species		Cover 15-25%.
				Reeds		No reeds
				Exotic species		Cover < 5%.
	当	Habitat	Riparian	Terrestrial woody species		Cover < 10%.
			u	Indigenous riparian woody species	Lower zone cover abundance	Cover 50-75%.
				Non-woody indigenous species		Cover 15-25%.
				Reeds		No reeds
				Exotic species		Cover < 10%.
				Terrestrial woody species		Cover = 15%.</td
				Indigenous riparian woody species	Upper zone cover abundance	Cover 50-75%.
				Non-woody indigenous species		Cover 10-20%
			Fish	FRAI score	Fish condition	> 52% = D category
	<u>B</u> i	Biota		Exotic fish species	Indigenous species richness	No increase in the number of exotic fish present: Cyprinus carpio (FROC = 5), Tilapia sparrmanii, Clarias gariepinus, Gambusia affinis
			Invertebrates	MIRAI score	Macroinvertebrate condition	> 62% = C category
				SASS5 and ASPT score	SASS scores	SASS5 score >90, ASPT ≥ 4.6.
				Number of families	Diversity of invertebrate community	>/= 18 families, at an abundance of A to C.

_	Quaternary	2	Resource	Biophysical	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
3	Catcoment		уаше	Node Name						Months Oct Jan Mar Mar Jun
						Quantity	Low flows High flows	Maintenance low flows Maintenance high	Flows sufficient to maintain the river in a C category	1,619 nace flows reable ress reable resp ress reable resp ress reable resp ress reable resp ress reable reable ress reable res
								flows		ioillim)
								Phosphate (PO ₄ -P)	Nutrient levels must be	< 0.075 milligrams/litre (50th percentile)
							Nutrients	Total inorganic nitrogen (TIN)	maintained in the river at a mesotrophic or better condition.	≤1.75 milligrams/litre (50th percentile)
			iver				Salts	Electrical conductivity (FC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic	S5 milliSiemens/metre (95th percentile)
	30°	70Я	R Br	Viiid	Ĺ			(0.1)	ecosystems	
	เอ	-Sጋ	əg ı	<u>†</u>	ر			pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
			niəl			, til circ	System variables	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
			K					Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)
								Ammonia		< 0.073 milligrams per litre (95th percentile)
							loxins	Atrazine	throat to again to constitute a	< 0.079 milligrams per litre (95th percentile)
								Endusulfan	tilleat to aquatic ecosystems.	< 0.0013 milligrams per litre (95th percentile)
							Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for intermediate contact recreation.	< 2500 counts/100ml (95th percentile)
						Habitat	Riparian vegetation	VEGRAI level 3 score.	Vegetation condition	> 62% = C category
						Biota	Fish	FRAI score	Fish condition	> 58% = C/D category
										Months Oct Nov Nov Nec Jan Heb Mar Apr Apr Apr Anu Jun Jun Sep
	901	80A-5	gitniwT-n	Bi1	B/C	Quantity	Low flows	Maintenance low flows	Flows sufficient to maintain	-
)	io c	9-r9iV					flows	מוכיות ביי מוכים ביי ביי ביי ביי ביי ביי ביי ביי ביי ב	Maintenan Maintenan million cubi High 0.217 0.000 0.00

Table 4: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis C5 Berg Tributaries

IUA	Class		S	Resource	Biophysical	TEC	Component	Sub-component	Indicator	ROO Narrative	ROO Numeric
		Catchment		Name	Node Name						
									Phosphate (PO ₄ -P)	Nutrient levels must be	≤ 0.025 milligrams per litre PO4-P
								Nutrients	Total inorganic nitrogen (TIN)	maintained in the river at an oligotrophic condition.	≤ 0.70 milligrams per litre TIN
								Salts	Electrical conductivity maintained in an Ideal (EC) category for aquatic ecosystems	ed to be	< 30 milliSiemens/metre (95th percentile)
							vijeno		pHrange	pH, temperature, and	$4.5 \le pH \le 7.0$ (5th and 95th percentiles)
							Ľ,	Cyctom cariables	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
								System variables	Dissolved oxygen	for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5th percentile)
								Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95th percentile)
							Habitat	Riparian vegetation	VEGRAI level 3 score. Vegetation condition		> 88% = A/B category
							Biota	Fish	FRAI score	Fish condition	> 88% = A/B category
								Invertebrates	MIRAI score	Macroinvertebrate condition	> 82% = B category

Table 5: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis B4 Lower Berg

	dəς	619.1	188.0		
	₿uĄ	₽81.7E	12.479		
	lυί	31.158	391.55		
	unr	24.346	814.8	<u>e</u>	<u> </u>
	γεΜ	14.684	814.8	enti	ıţie
u	ηqΑ	126.01	964.2	er Ce	Ger
RQO Numeric	Mar	7 ₽6.7	000.0	ρe	per
Ĕ	Feb	272.8	000.0	ŧ	돧
Ž	uel	000.8	000.0	e (5	(20
g	Dec	6ZS.6	000.0	ij	tre
~	voM	15.280	000.0	ns/	s/li
	toO	781.97	2.496	rar	аш
		гом	ЯВіН	i≣i	ligr
	Months	noillion) swolf 93 (Restres)		≤ 0.075 milligrams/litre (50th percentile)	s 1.75 milligrams/litre (50th percentile)
RQO Narrative		Flows sufficient to maintain the river in a D category		Nutrient levels must be	maintained in the river at a mesotrophic or better condition.
Indicator		Maintenance low flows Maintenance high flows		Phosphate (PO ₄ -P)	Total inorganic nitrogen (TIN)
Sub-component		Low flows High flows			Nutrients
Component		Quantity			Quality
TEC		۵			
Biophysical Node Name		Bvii6			
Resource Name		g River	Berg		
RU		60 8 -	P8		
Quaternary Catchment		rot	9		
IUA Class		III			
N N		wer Berg	194 Lov		

IUA Class		Quaternary R		Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
								Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	< 55 milliSiemens/metre (95th percentile)
									pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
								System yariahles	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
								oystell validates	Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)
							·		Atrazine	Toxicity levels must not pose a	< 0.079 milligrams per litre (95th percentile)
								SUIXO	Endusulfan		< 0.0013 milligrams per litre (95th percentile)
										Concentrations of waterborne	
									:	pathogens should be	
								Pathogens	Escherichia coli	maintained in an Acceptable	≤ 1000 counts/100ml (95th percentile)
										recreation.	
								Geomorphology	GAI score -	Geomorphological condition	> 68% = B/C category
									D50	Sand particle size	0.576 > D50 > 0.349
									VEGRAI level 3 score.	Vegetation condition	> 42% = D category
									Exotic species		No exotic plant species.
									Terrestrial woody		No terrestrial woodv species.
									species		
									Indigenous riparian	Marginal zone cover	Cover 30-50%.
									woody species	abundance	
									Non-woody indigenous		Cover 30-50%.
									species		, oc. 20, c.
									Keeds		Cover 30-50%.
									Exotic species		Cover < 5%.
							Habitat		Terrestrial woody		Cover < 10%.
									species		
								vegetation	Indigenous riparian	lower zone cover abundance	Cover 50-75%
									woody species		
									Non-woody indigenous		2-10%
									species		- TO/0:
									Reeds		No reeds
									Exotic species		Cover < 10%.
									Terrestrial woody		Cover = 15%.</td
									sharies		
									Indigenous riparian	Upper zone cover abundance	Cover 30-50%.
									woody species		
									Non-woody indigenous		Cover 30-50%.
	-		-						sbecies		

Blota Invertebrates Fish FRAI score Fish condition	Class		Quaternary F	J.	Resource	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
Biotra Minch Species Indigenous species richness Rection Indigenous species richness									Fish	FRAI score		> 18% = F category
Authority of the protein and the following built of the following bu										Exotic fish species		No increase in the number of exotic fish present: Cyprinus carpio, Oreochromis mossambicus, Tilapia sparrmanii, Micropterus punctulatus, Clarias gariepinus and Gambusia affinis.
Cuantity Cuanti							_	siota	Invertebrates	MIRAI score	Macroinvertebrate condition	> 42% = D category
Number of families Dissolved oxygen Dissolved oxygen Community Commonthy Low flows Maintenance low Flows sufficient to maintain Community Co										SASS5 and ASPT score		\$ASS5 score >80, ASPT ≥ 5.0
Admired and the river in a D category High flows and flows and flows authorient to maintain the river in a D category flows are also and the river in a D category flows and the river in a D category flows and the river in a D category flows are also and the river at an introgen (TIN) and the river at an introgen and the river at an introgen and a special an										Number of families	nvertebrate	>/= 15 families, at an abundance of A to C.
Authority Build flows Maintenance high the river in a D category flows and flows flows flows and flows flows flows and flows flows from the river in a D category flows										Maintenance low		VoV Dec
Phosphate (PO ₂ -P) Nutrient levels must be nutrients Total inorganic maintained in the river at an introgen (TIN) mesotrophic condition.								Quantity	Low flows High flows	flows Maintenance high	Flows sufficient to maintain the river in a D category	tres) Low 17.1 10.1 6.56
Nutrients Total inorganic maintained in the river at an nitrogen (TIN) mesotrophic condition. Salts (EC) Salts (EC) and a levels must be maintained at levels that do not adversely affect aduatic consystems Duality System variables Dissolved oxygen are important of cosystems. Toxins Arazine pathogens exception and a levels must not pose a findusulfan conduction of waterborne pathogens should be pathogens (Geomorphology GAI score - Geomorphological condition vegetation condition Exotic species (Marginel as Socre.) Riparian Vegetation Exotic species (Marginel cooker										flows		m) swolf cubic me Hgh 2.760 0.000 0.000
Nutrients Total inorganic maintained in the river at an nitrogen (TIN) mesotrophic condition. Salt concentrations need to be Electrical conductivity maintained at levels that do not adversely affect aquatic ecosystems. PHabitat Riparian Poton Argentation Concentrations of Arrazine Concentrations of waterborne pathogens should be concentration or adversely affect aduatic cooystem and pathogens are important at levels that do not adversely affect aquatic cooystems. Arrazine Concentrations of waterborne pathogens are important at loading coordition and ceptable contractions of waterborne pathogens should be pathogens. Bisparian Acceptable contact recreation. Habitat Riparian VEGRAl level 3 score. Geomorphological condition wegetation. Exotic species Marginal zone cover										Phosphate (PO ₄ -P)		< 0.075 milligrams/litre (50th percentile)
Salts (EC) Salts (EC) Accordance to be Electrical conductivity maintained at levels that do not adversely affect aquatic ecosystems (EC) Accordance and evels that do not adversely affect aquatic ecosystems (EC) Accordance and evels that do not adversely affect aquatic ecosystems (Accordance and Evels) Accordance and ecosystems and ecosystem and ecosystem remportant for the maintenance of Economytopics and Endusulfan (Concentrations of waterborne pathogens should be pathogens should be category for intermediate contact recreation. Habitat Riparian Repair (Soore - Geomorphological condition regetation or regetation (Exotore - Geomorphological condition (Exotore - Geomorp									Nutrients	Total inorganic nitrogen (TIN)		≤ 1.75 milligrams/litre (50th percentile)
Quality System variables Water temperature dissolved oxygen are important for the maintenance of Dissolved oxygen are important for the maintenance of Corcentrations of waterborne pathogens should be pathogens should be pathogens should be contact recreation. Habitat Riparian Riparian PExotic Species Marginal Zone Condition Sand particle size Sand particle size Waterian Condition Sand particle size Sand particle size Waterian Confert species Marginal Zone cover	ĺ			310	River	, ,	C		Salts	Electrical conductivity (EC)	o e	≤ 55 milliSiemens/metre (95th percentile)
Actuality System variables Dissolved oxygen are important for the maintenance of Dissolved oxygen are important and the maintenance of Endusulfan Toxicity levels must not pose a Endusulfan Concentrations of waterborne pathogens should be maintained in an Acceptable category for intermediate contact recreation. Habitat Riparian Rejation Condition Condition Sand particle size Exoteric Species Marginal zone cover	П			I- 1 8	Bue	BVII 12	٥			pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
Toxins Atrazine Toxicity levels must not pose a Endusulfan Concentrations of waterborne pathogens should be category for intermediate control of Geomorphology GAI score- Geomorphological condition wegetation WEGRAI level 3 score. Wegetation condition Exotic species Marginal zone cover				l	98			, tilcii.	System wariables	Water temperature	dissolved oxygen are important	2°C difference from ambient
Toxins Atrazine Toxicity levels must not pose a Endusulfan threat to aquatic ecosystems. Concentrations of waterborne pathogens should be maintained in an Acceptable category for intermediate contact recreation. Geomorphology GAI score- Geomorphological condition tat Riparian VEGRAI level 3 score. Vegetation condition vegetation Exotic species Marginal zone cover								Zuallıy	System variables	Dissolved oxygen	ce of	≥ 6 miligrams litre (5th percentile)
Endusulfan threat to aquatic ecosystems. Concentrations of waterborne pathogens should be pathogens should be maintained in an Acceptable category for intermediate contact recreation. Geomorphology GAI score - Geomorphological condition book sand particle size contact recreation. Book Sand particle size some vegetation condition book sand particle size some vegetation some some some sand sand sand sand sand sand sand sand									Toxins	Atrazine		< 0.079 milligrams per litre (95th percentile)
Pathogens Escherichia coli maintained in an Acceptable category for intermediate contact recreation. Geomorphology GAI score - Geomorphological condition Riparian VEGRAI level 3 score. Vegetation condition Vegetation Exotic species Marginal zone cover										Endusulfan		< 0.0013 milligrams per litre (95th percentile)
Pathogens Escherichia coli maintained in an Acceptable category for intermediate contact recreation. Geomorphology GAI score - Geomorphological condition Biparian VEGRAI level 3 score. Vegetation condition Vegetation Exotic species Marginal zone cover											Concentrations of waterborne	
decomorphology GAI score - Geomorphologix GAI score - Geomorphological condition Riparian VEGRAI level 3 score . Vegetation condition Vegetation Exotic species Marginal zone cover									Pathogens	Escherichia coli		< 2500 counts/100ml (95th percentile)
deomorphology GAI score- Geomorphological condition Lat Riparian VEGRAI level 3 score. Vegetation condition Vegetation Exotic species Marginal zone cover											category for intermediate contact recreation.	
tat Riparian VEGRAI level 3 score. Vegetation condition vegetation Exotic species Marginal zone cover									Geomorphology	GAI score -	Geomorphological condition	> 68% = B/C category
Riparian VEGRAI level 3 score. Vegetation condition vegetation Exotic species Marginal zone cover								Habitat Iobitot		D50	Sand particle size	0.860 > D50 > 0.275
Exotic species Marginal zone cover								abitat	Riparian	VEGRAI level 3 score.		> 42% = D category
		_		_					vegetation	Exotic species	Marginal zone cover	No exotic plant species.

		¥			L	Component	Sub-component	noicator	ROO Narrative	ROO Nimeric
	Catchment	2	Name	Node Name	} -					
							phology	Terrestrial woody	abundance	No terrestrial woody species.
							Riparian	species		
							vegetation	Indigenous riparian		20-50%
								woody species		200-00 12000
								Non-woody indigenous	10	Co.,or E0.7E%
								species		COVEL 30-7.378:
								Reeds		Cover 15-25%.
							Fish	FRAI score	Fish condition	85% (B category)
								Exotic fish species	Indigenous species richness	No increase in the number of exotic fish present:
							Invertebrates			Cyprinus carpio, Oreochromis mossambicus,
							Fish			Tilapia sparrmanii, Micropterus punctulatus,
										Clarias gariepinus and Gambusia affinis.
								MIRAI score	Macroinvertebrate condition	81.4% (B/C category)
								SASS5 and ASPT score	SASS scores	SASS5 score >85, ASPT ≥ 4.2.
								Number of families	Diversity of invertebrate	>/= 19 families, at an abundance of A to C.
									community	

Table 6: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis D10	Diep
able 6: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis	010
able 6: Resource Quality Objectives for RIVERS in priority	of Analysis I
able 6: Resource Quality Objectives for RIVERS in priority	Jnit
able 6: Resource Quality Objectives for RIVERS in priority	Integrated L
able 6: Resource Quality Objectives for RIVERS in priority	the
able 6: Resource Quality Objectives for RIVERS in priority	Jnits in
able 6: Resource Quality Objectives for	Resource L
able 6: Resource Quality Objectives for	n priority
able 6: Resource Qualit	RIVERS i
able 6: Resource Qualit	for
able 6: Resource Qualit	Objectives
able 6:	ualit
	able 6:

	βuΑ q92	901.0	0.120						nre	
	lυί	0.130	0.120			(e)			erat	
	unr	060.0	462.0	(e)	(e)	ntil		es)	mpe	
	γεM	640.0	911.0	ent	ntil	irce		ij	rte	
<u>.0</u>	лqА	120.0	000.0	erc	rce	h pe		rce	ate	tile)
ner	Mar	0.015	000.0	thp	ed (95t		be (ţ.	cen
RQO Numeric	Jan	0.020	000.0	(20	50tl	e (e		35th	ojen	per
õ	Dec	620.0	000.0	tre	.e (<u>.</u>	net		pu	amk	5th
2	voN	650.0	£00.0	s/li	/litr	ıs/r		h al	E .	e (E
	150	670.0	920.0	< 0.075 milligrams/litre (50th percentile)	1.75 milligrams/litre (50th percentile)	meı		$6.5 \ge pH \le 8.5$ (5th and 95th percentiles)	e fr	≥ 6 milligrams litre (5th percentile)
		мој	АВіН	ijij	ligra	iSie		8.	enc	am
	Months	(səa)	təm	5 m	Ξ	E E		ž	ffer	lig.
	Mor	oiduo n	ioillim)	.07	75	.50		VI	C dif	Ē
		swolf 95n	Enetena	۷ı	\ 1	^i		6.5	t 2°(۸۱
RQO Narrative		Flows sufficient to maintain the river in a D category		Nutrient levels must be	maintained in the river at a mesotrophic or better condition.	Diep River is naturally saline and should be maintained in its < 450 milliSiemens/metre (95th percentile)	current status.	pH, temperature, and	dissolved oxygen are important 2°C difference from ambient water temperature	for the maintenance of ecosystem health.
		Flows		Nutrien	maintained mesotroph condition.	Diep Riv and sho	current	pH, ten	dissolve	for the ecosyst
Indicator	Maintenance low	flows Maintenance high flows		Phosphate (PO ₄ -P)	Total inorganic nitrogen (TIN)	Electrical conductivity		pH range	Water temperature	Dissolved oxygen
.		Σ		Phos	Tota	Elect	(۲۵)	pH r		
Sub-component		Low flows High flows			Nutrients	Salts			System yariahles	7,2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
Component		Quantity				Quality				,
TEC				(۵					
Biophysical Node Name				,	BVI					
Resource Name			st	∍vi۶	dəiQ					
R.			1	ВŢЗ	-DTO					
Quaternary Catchment				στ	79					
Class				I	II					
IUA			C	ləiC	D101					

	1
	τ

	Quaternary Catchment	r y R	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric			
							Toxins	Atrazine	Toxicity levels must not pose a	< 0.079 milligrams per litre (95th percentile)	h percentile)		
								Endusulfan	threat to aquatic ecosystems.	≤ 0.0013 milligrams per litre (95th percentile)	th percentile	<u></u>	
							Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for intermediate contact recreation.	≤ 2500 counts/100ml (95th percentile)	entile)		
										Mar Mar Mar Mar Mar Mar	Apr YeM nut Iut	guĄ	dəç
						Quantity	Low flows High flows	Maintenance low flows Maintenance high	Flows sufficient to maintain the river in a D category	uoillin	£40.0 £80.0 £71.0 7£2.0	082.0	922.0
								flows		9tnisM n) swolf m sidus dgiH 770.0 770.0 600.0 000.0 000.0	000.0 702.0 268.0	0.146 695.9	262.0
								Phosphate (PO ₄ -P)	River nutrient levels must be	< 0.125 milligrams/litre (50th percentile)	rcentile)		
							Nutrients	Total inorganic nitrogen (TIN)	improved to eutrophic conditions.	\leq 2.5 milligrams/litre (50th percentile)	entile)		
							Salts	Electrical conductivity (EC)	Diep River is naturally saline and should be maintained in its \leq 350 milliSiemens/metre (95th percentile) current status.	s 350 milliSiemens/metre (95th	percentile)		
		7	æ					pHrange	pH, temperature, and	$6.5 \le pH \le 8.5$ (5th and 95th percentiles)	centiles)		
	στσ	1 8 -6	viЯ	Biv6	۵		System variables	Water temperature	dissolved oxygen are important 2°C difference from ambient water temperature	2°C difference from ambient wa	ter temperat	ture	
	2 9	DIO	Diep		1	Quality		Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)	le)		
							Toxins	Atrazine	В	≤ 0.079 milligrams per litre (95th percentile)	h percentile)		
								Endusulfan	threat to aquatic ecosystems.	< 0.0013 milligrams per litre (95th percentile)	th percentile	_	
							Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for intermediate contact recreation.	≤ 2500 counts/100ml (95th percentile)	entile)		
							Geomorphology	GAI score	Geomorphological condition	> 22% = E category			
						Habitat	Riparian vegetation	VEGRAI level 3 score.	Vegetation condition	> 18% = F category			
						0; 0+0; 0+0;	Fish	FRAI score	Fish condition	> 22% = E category			
-		-				DIOLG	Invertebrates	MIRAI score	Macroinvertebrate condition	> 22% = E category			

Table 7: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis E11 Peninsula

		_																_			_		_
	dəς	402.0	881.0							a									dəç	££2.	0	£20.0	
	₿uĄ	22.0	460.0	_						tur									₿uĄ	782.	_	161.0	
	lut	122.0	£42.0	< 0.125 milligrams per litre (50th percentile)	<u>e</u>					era									lut	252.	0	620.0	
	unr	0.142	208.0	ent	重	ie			es)	npe	_	_							unr	851.	0	880.0	<u>e</u>
	γεΜ	070.0	121.0	erc	≤ 2.50 milligrams per litre (50th percentile)	55 milliSiemens/metre (95th percentile)			Ē	ter	ie)	ie)							γεΜ	690	0	980.0	nti
	ηdΑ	780.0	000.0	ğ	be	S C			Ger	er	ent	int							лqА	۲٤0.	0	000.0	Sce
.E	Mar	520.0	000.0	=	£	ğ			er	٧at	J. C.	2							Mar	720.	_	000.0	bel
me	Еèр	920.0	000.0	6 (5	(20	5t			th	ıţ.	be 1) pe							Feb	620.	_	000.0	돺
Z	nel	620.0	000.0	ij	<u>5</u>	6)			951	oje.	5th	굺							Jan	250.	_	000.0	(50
RQO Numeric				er	≛	iğ.			pu	Ē) e	6)									_		e.
2	Dec	8£0.0	000.0	ğ	be	Ĭ,			اهر	T 3	Ĕ	Œ				_	5	_	Dec	£20.	\rightarrow	000.0	Ĕ
	voN	170.0	600.0	ä	JIS .	ns/			(5tl	ī.	er	100				Son	eg	gor	voN	ZOT.	_	200.0	ms
	toO	281.0	7£0.0	igi	la j	шe			Ŋ	Ge 1	JS F	ts/				teg	cat	teg	toO	791.	_	710.0	gra
		МОЛ	АВіН	Ē	≝	Sie			ω 	en	an	ä				Ca	4	CS		wo	די	ЯВіН	<u>≣</u>
	Months	etres)	m sidus	5.	E	l≣			포	Ę	. <u>e</u>	2				=	ii.] =	Months		res)	təm	5 n
	₽	noillin	n) swolf	17	.5	2			VI	ē	Ē	lŏ				2%	8%	2%	δ	oi	qnɔ ι	roillim)	0.
	_	əsueu	Mainter	VI	\sqrt{2}	\ 5			$6.5 \ge pH \le 8.5 (5th and 95th percentiles)$	2°C	≥ 6 milligrams per litre (5th percentile)	≤ 4000 counts/100ml (95th percentile)				> 22% = E category	> 18% = E/F category	> 42% = D category	_	swol	t əɔn	Maintena	≤ 0.075 milligrams/litre (50th percentile)
RQO Narrative		Flows sufficient to maintain the river in a D category		Nutrient levels must be	maintained in the river in a eutrophic or better condition.	Salt concentrations need to be	maintained at levels that do	not adversely affect aquatic ecosystems	pH, temperature, and	dissolved oxygen are important 2°C difference from ambient water temperature	for the maintenance of ecosystem health.	Concentrations of waterborne	pathogens should be	maintained in an Acceptable category for full contact	recreation.	Vegetation condition	Fish condition	Macroinvertebrate condition		Flows sufficient to maintain	the river in a C category		Nutrient levels must be
Indicator	Maintenance low	flows Maintenance high	flows	Phosphate (PO ₄ -P)	Total inorganic nitrogen (TIN)		trical conductivity	(EC)	pH range	Water temperature	Dissolved oxygen		:	Escherichia coli		VEGRAI level 3 score.	FRAI score	MIRAI score		Maintenance low flows	Maintenance high		Phosphate (PO ₄ -P)
Sub-component		Low flows High flows			Nutrients		Salts	0,000		System variables	מומסוכם		.	Pathogens		Riparian vegetation	Fish	Invertebrates		Low flows	High flows		Nutrients
Component		Quantity							O i sility	, , , , , , , , , , , , , , , , , , ,						Habitat		ыота		Quantity	,		Quality
TEC								۵													O		
Biophysical Node Name								Bviii6													Bvii20		
Resource Name							λe	lout B	1										; L	əviЯ əı	nimr	əvli2	
R							٤1	:TT-B	1											414	I-TT:	3	
Quaternary Catchment							{	e558			_					_				ΑΩ	279		
Class								II													II		
IUA						e	nsı	nin99	EII											elusnii	ьeu	TT3	

IUA Class		Quaternary F	- 2	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
									Total inorganic nitrogen (TIN)	maintained in the river at a mesotrophic or better condition.	1.75 milligrams/litre (50th percentile)
							-	Salts	Electrical conductivity (EC)	Salt concentrations need to be Electrical conductivity maintained at levels that do not adversely affect aquatic ecosystems	≤ 350 milliSiemens/metre (95th percentile)
									pH range Water temperature	pH, temperature, and dissolved oxygen are important	pH, temperature, and 6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles) dissolved oxygen are important 1°C difference from ambient water temperature
								System variables		for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)
								Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for intermediate contact recreation. In the long sterm the aim should be to improve the river to an Acceptable category for full contact recreation.	Concentrations of waterborne pathogens should be maintained in an Ideal category for intermediate contact recreation. In the long improve the river to an Acceptable category for full contact recreation.
							Habitat	Riparian vegetation	VEGRAI level 3 score.	Vegetation condition	> 62% = C category
							Biota	Fish	FRAI score	Fish condition	> 82% = B category
	-							Invertebrates	MIRAI score	Macroinvertebrate condition	> 62% = C category

Table 8: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis E12 Cape Flats

	dəς	₽ \$0.0	TS0:0		
	guA	990.0	920.0		
	lut	950.0	9£1.0		
	unr	250.0	890.0	< 0.125 milligrams/litre (50th percentile)	- F
	veM	0.012	0.00 720.0	.uə	ıtile
٠̈̈	Jan Heb Mar Apr Apr	600.0	000.0	ber	≤ 3.0 milligrams/litre (50th percentile)
RQO Numeric	75M	600.0	000.0	긡	per
Š	nan	110.0	000.0	(20	0th
႙	Dec	410.0	000.0	itre	9 (5
ž	voN	420.0	100.0	l/sı	<u>i</u>
	toO voM	8£0.0	210.0	ran	/sw
		мод	АВіН	i≣	gra
	Months	res)	təm	5 m	iii
	Š		noillim)	.12	0.
		swoll ean	Maintena	٧ı	VI
RQO Narrative		Flows sufficient to maintain the river in a D category		Nutrient levels must be	maintained in the river at a eutrophic or better condition.
Indicator	- - :	Maintenance low flows Maintenance high		Phosphate (PO ₄ -P)	Total inorganic nitrogen (TIN)
Sub-component		Low flows High flows			Nutrients
Component		Quantity			Quality
TEC		c	٥		
Biophysical Node Name		D. G.	À		
Resource Name		s River	Keyser		
RU.		RIS	-E12-		
Quaternary Catchment		SD	79		
Class		li	ıı		
IUA		stal4 90	E12 Cal		

IUA Class	Quaternary Catchment	S.	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
							Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	S5 milliSiemens/metre (95th percentile)
								pH range	pH, temperature, and	$6.5 \le pH \le 8.5$ (5th and 95th percentiles)
							System variables	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
							Oystell valiables	Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)
							Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in a Tolerable category for intermediate contact recreation. In the long term the aim should be to improve the river to an Acceptable, and then Ideal category for intermediate contact recreation.	≤ 4000 counts/100ml (95th percentile)
						Habitat	Riparian	VEGRAI level 3 score. Vegetation condition		> 38% = D/E category
							vegetation			
					_	Biota	Fish	FRAI score	Fish condition	> 62% = C category

Table 9: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis D6 Eerste

dəς	£69 [.] 0	0.412			
	417.0	902.0			
lυt	249.0	1.052			_
unr	222.0	747.0	ie)	(e)	tile
May	288.0	454.0	ent	ntil	cen
лqА		000.0	erc	rce	per
Mar		000.0	h p	pe	t
Feb		000.0	50t	Oth	36)
nel	002.0	000.0	re (e (5	tre
Dec	645.0	000.0	Ĭ	litro	/me
YOM		290 0	ä	/sw	sus,
120		2000	ligra	graı	eme
hs			Ē	i	liSie
lont)75	75 n	Ē
≥			0.0	1.7	522
	Flows sufficient to maintain the river in a C category		Jutrient levels must be	naintained in the river at a nesotrophic or better ondition.	Salt concentrations need to be ≤55 milliSiemens/metre (95th percentile) maintained at present day levels.
aintenance low	flows Maintenance high flows			()	Electrical conductivity r (EC)
Σ	Σ		Phos	Total nitrog	Elect (EC)
Σ	Low flows High flows Ma		Phos		
>			Phos	Nutrients Total nitro	Salts
>	Low flows High flows	U	Phos	Nutrients	Salts
>	Low flows High flows	Biii6 C	Phos	Nutrients	Salts
>	Quantity Low flows			Nutrients	Salts
>	Quantity Low flows	Biii6	лкет	Nutrients	Salts
	Quantity Low flows	shoek Ri	лкет	Nutrients	Salts
>	Quantity Low flows	Biil Rypoek Ki	лкет	Nutrients	Salts
	Months Oct Nov Nec And Nec And Nec And Nec And Ini	Hows sufficient to maintain a C category (0.335 May 0.126 Mar 0.200 Jan 0.142 Feb 0.14	The was sufficient to a solution of the control of	Month the river in a C category with the river in a C category	Nutrient levels must be Maintenance flow Nutrient levels must be Maintenance flow Nutrient levels must be S.0.075 milligrams/litre (50th percentile) Nutrient levels must be S.0.075 milligrams/litre (50th percentile) Nutrient levels must be S.0.075 milligrams/litre (50th percentile) S.0.075 milligrams/litre (50th

Quaternary RU	Resource	Biophysical	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
1	ב פ ב	מסת ואסת ואסת ואסת ואסת ואסת ואסת ואסת וא						
						pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
					oldeises metabolo	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
					system variables		for the maintenance of	> 6 milligrams litre (5th percentile)
						Dissolved oxygen		
						Ammonia		≤ 0.073 milligrams per litre (95th percentile)
					Toving	Atrazina	В	< 0.079 milligrams ner litre (95th nercentile)
						Fndusulfan	threat to aquatic ecosystems.	 COUTS milliars we need the (95th perceptile)
							\neg	
							nathogens should be	
							maintained in an Accentable	
							category for intermediate	
					Pathogens	Ferberichia coli	מטס	< 2500 counts/100ml (95th percentile)
							improve the river to an Ideal	
							milprove tile river to all ideal	
							category for intermediate	
				4041401	1000		11.10) - /0C)
				Habitat	Geomorphology	GAI score	Geomorphological condition	> 62% = C category
					Riparian	VEGRAI level 3 score.	Vegetation condition	> 62% = C category
					vegetation			
					Fish	FRAI score	Fish condition	> 42% = D category
				ыота	Invertebrates	MIRAI score	Macroinvertebrate condition	> 62% = C category
) I I I I I I I I I I I I I I I I I I I
						Mointaint		Months Occ Mood Model Mask Model Model Mask Model Mod
					-	Maintenance low		
				Quantity	Low flows High flows	flows Maintenance high	Flows sufficient to maintain the river in a D category	noillin
						IIOWS		Maintee flows (n cubic m High 0.000
	iver					Phosphate (PO ₄ -P)	Nutrient levels must be	< 0.125 milligrams/litre (50th percentile)
T8-90	A səiq	Biv8	۵		Nutrients	Total inorganic nitrogen (TIN)	maintained in the river at a eutrophic or better condition.	≤ 3.0 milligrams/litre (50th percentile)
]	Klip			<u>:</u>	Salts	Electrical conductivity (EC)	4)	≤ 55 milliSiemens/metre (95th percentile)
				Quality		pH range	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
					Systom syriables	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
						Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)
						Ammonia	t not pose a	≤ 0.073 milligrams per litre (95th percentile)
					loxins	Atrazine		< 0.079 milligrams per litre (95th percentile)

RQO Numeric	< 0.0013 milligrams per litre (95th percentile)	s 4000 counts/100ml (95th percentile)	> 22% = E category	> 18% = D/E category	> 62% = C category
RQO Narrative		Concentrations of waterborne pathogens should be maintained in a Tolerable category for intermediate contact recreation. In the long term the aim should be to improve the river to an Acceptable, and then Ideal category for intermediate contact recreation.		Fish condition	Macroinvertebrate condition > 62% = C category
Indicator	Endusulfan	Escherichia coli	VEGRAI level 3 score. Vegetation condition	FRAI score	MIRAI score
nponent Sub-component	_	Pathogens	Riparian vegetation	Fish	Invertebrates
S		_	Habitat	Biota	
TEC					
Biophysical Node Name					
Resource Name					
RO .					
Quaternary Catchment					
Class					
IUA					

Table 10: Resource Quality Objectives for RIVERS in priority Resource Units in the Integrated Unit of Analysis D7 Sir Lowrys

ΙΩ	Class	Quaternary Catchment		RU Re	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
										Maintenance low		A ont of the property of the p
								Quantity	Low flows High flows	flows Maintenance high	Flows sufficient to maintain the river in a D category	noillir
Ş										TIOWS		Maintel Maintel flows (n cubic m cubic m cubic m High m High 0.355 0.355 0.000 0.000 0.000 0.000 0.000 0.563 0.000 0.000 0.000 0.000 0.563 0.000
۱ελ, ε				9	ıəvi					Phosphate (PO ₄ -P)	Nutrient levels must be	< 0.075 milligrams/litre (50th percentile)
woJ	II	פזזו	014 ZU	318-70	Lourens R	Bvii21	Ω		Nutrients	Total inorganic nitrogen (TIN)	maintained in the river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50th percentile)
]								Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	55 milliSiemens/metre (95th percentile)
										pHrange	pH, temperature, and	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)
									System variables	Water temperature	dissolved oxygen are important	dissolved oxygen are important 2°C difference from ambient water temperature
									System variables	Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5th percentile)
									Toxins	Ammonia -	Toxicity levels must not pose a	≤ 0.073 milligrams per litre (95th percentile)

RQO Numeric	≤ 0.079 milligrams per litre (95th percentile)	≤ 0.0013 milligrams per litre (95th percentile)	nl (95th percentile)					Dec Jan Feb Mar May Jun Jul Sep	10E.0 692.0 10E.0 62F.0 72C.0 62F.0 72C.0 72C.0 72C.0 72C.0 72C.0 72C.0 72C.0 72C.0	000.0 000.0 000.0 000.0 000.0 000.0 000.0 115.1 787.0 282.0	S 0.075 milligrams/litre (50th percentile)	≤ 1.75 milligrams/litre (50th percentile)	55 milliSiemens/metre (95th percentile)	6.5 ≤ pH ≤ 8.5 (5th and 95th percentiles)	ambient water temperature	5th percentile)	< 0.073 milligrams per litre (95th percentile)	(-1:T
~	≤ 0.079 milligrams p	≤ 0.0013 milligrams	≤ 2500 counts/100ml (95th percentile)	> 42% = D category	> 42% = D category	> 22 % = E category	> 42% = D category	Months Oct	oiduo	nenetnisM noillim) ntem dgiH 08£.0 280.0	< 0.075 milligrams/	< 1.75 milligrams/lir	≤ 55 milliSiemens/n	6.5 ≤ pH ≤ 8.5 (5th a	t 2°C difference from	≥ 6 milligrams litre (5th percentile)		(0) 179 millians and litro (05+b parentilla)
RQO Narrative	threat to aquatic ecosystems.		Concentrations of waterborne pathogens should be maintained in an Acceptable category for intermediate contact recreation. In the long term the aim should be to improve the river to an Ideal category for intermediate contact recreation.	Geomorphological condition	Vegetation condition	Fish condition	Macroinvertebrate condition		Flows sufficient to maintain the river in a C category		Nutrient levels must be	maintained in the river at a mesotrophic or better condition.	Salt concentrations need to be maintained at present day levels.	pH, temperature, and	dissolved oxygen are important 2°C difference from ambient water temperature	for the maintenance of ecosystem health.		loxicity levels must not pose a
Indicator	Atrazine	Endosulfan	Escherichia coli	GAI score	VEGRAI level 3 score.	FRAI score	MIRAI score	-	Maintenance low flows Maintenance high	Hows	Phosphate (PO₄-P)	Total inorganic nitrogen (TIN)	Electrical conductivity (EC)	pH range	Water temperature	Dissolved oxygen	Ammonia	A+r.2.1;00
Sub-component			Pathogens	Geomorphology	Riparian vegetation	Fish	Invertebrates		Low flows High flows			Nutrients	Salts		System variables			Tovine
Component				1 1 1 1 1	нарісат	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	biota		Quantity				<u>:</u>	Quality				
Node Name												Bviii9 C						
Name										θĹ	viЯ	sse9 s'yາv	VOJ JIS					
Catchment RU												LS25						
IUA Class C												Sir Lowry						

Component Sub-component
Pathogens
Habitat Riparian vegetation
Fish
Biota Invertebrates
Quantity High flows
Nutrients
Salts
Quality System variables
ŀ
IOXIUS
Pathogens
Habitat Geomorphology

RQO Numeric	> 78% = B/C category		> 52% = D category	> 92% = A category
RQO Narrative	VEGRAI level 3 score. Vegetation condition		Fish condition	Macroinvertebrate condition > 92% = A category
Indicator	VEGRAI level 3 score.		FRAI score	MIRAI score
Component Sub-component	Riparian	vegetation	Fish	Invertebrates
			Biota	
TEC				
Biophysical Node Name				
Resource Name				
RU.				
Quaternary Catchment				
Class				
IUA				

Table 11: Resource Quality Objectives for ESTUARIES in priority Resource Units in the Integrated Unit of Analysis A1 Berg Estuary

	IsunnA	(%25) 98.984	Estuary (low flows < 1 m 3 s 1 , summer): DIN <300 µg/l; DRP <100 µg/l in Zones A and B, DIN <80 µg/l ; DRP <30 µg/l in		ORP	20		Salinity <20 for longer than 3 months at 20 km upstream from the mouth; Salinity <1 ppt above 40 km upstream of the mouth; Salinity of Salinity everywhere in estuary <35; Groundwater salinity on floodplain <45. TDS of river inflow	2						pathogens should be maintained 4.185 Enterococci/100 ml) (90th percentile, hazen system)		
	dəç	(%89) \$2,162	Estuary (low flows < 1 m 3 .s 1 , summer): DIN <300 µg/l; DRI <100 µg/l in Zones A and B, DIN <80 µg/l ; DRP <30 µg/l in		Estuary (high flows > 5 m 3 .s 1 , winter): DIN <800 µg/l; DRP <60 µg/l in Zones A-D	River inflow (< 1 m $^3\mathrm{s}^{-1}$, summer): DIN <80 µg/l; DRP <20 µg/l	River inflow (>5 m $^3.5^{-1}$, winter): DIN <800 µg/l; DRP <60 µg/l	Salinity <20 for longer than 3 months at 20 km upstream from the mouth; Salinity <1 ppt above 40 km upstream of the mouth; Salinity of Salinity everywhere in estuary <35; Groundwater salinity on floodplain <45. TDS of river inflow							syste		
	3uA	(%89) 21.751	30 µ		em (<u>,</u>	DRP	ups pstr tual	-					1)	en s		
	lut	(%24) 25.45 (%18) 25.521	<3(800	l/8m	, , ,	km m u n es	5					د. ا	haz		
	unr		Π		ž	89	<u>a</u>	20 0 kr 1 re i	5					1 Jn	tile,		
u	YpA YsM	(%92) 81.22	er): µg/		<u>ا</u> : ت	ž	08>	s at ve 4 whe)					× ×	cent		
eri		(%02) 99.1 (%9E) 81.6	й 8 8		nte	<u>:</u>	N N	abo ery						/ flo	per		
RQO Numeric	Mar	(%02) 99 T	sur		, ×	mer	<u>:</u>	t mc	5					0	0th		
o O	Feb	(%61) 19.1	.s., B, E		.s.	m,	inte	an 3 <1 p		2		_		ring	6) (
2	Jan		and		5 m	1, S	[™] ,	r thairty F Sal	5	× ×	_	mg/		np	m L		
	Dec	3.92 (25%)	s < 1		s> A-D	e	.s.	nger Salir y of	1	H	3.5	×4 r	=	0 m	,100		_
	voM	15.55 (36%)	ows		low	17	π	r lor th; S linit	=	/ <	×	8	mg	4.	cci/		ber
	15O	31.21 (46%)	w fl n Zc	Дρ	gh f Zor	<u>×</u>	<u>^</u>	o fo nout ; Sal		×.	q v	×	4	d B	000		tļ c
		IAR ral)	/(lo) j/(g	Zones C and D	Estuary (high flows > 5 <60 μg/l in Zones A-D	allo Ho	allo Ho	<20 Ne m uth	<3500 mg/l	River inflow: 7 < pH < 8.5	Estuary: 7 < pH < 8.5 "	River inflow: DO >4 mg/l	Estuary DO >4 mg/l"	¹ an	nter		Permanently open
	ıths	IR/N Vatu	uar,	es (uar) Hg	ë -	ë '	nity n th mo	00	/er i	uar)	/er i	uar	es /	35 EI		mar
	Mor	MMR/MAR (% Natural)	Estu <10	Zon	Estu <60	Rive µg/l	Rive µg/l	Sali fror the	35	<u></u>	Est	<u>"</u>	Estı	Zon	≥18		Per
	River inflow should never dropMonths below 0.6 m ³ .s ⁻¹ and should not	below 1 m ³ ·s ⁻¹ for longer than 4 months; Flood frequency Should not increase/decrease by more (% Natural) than 10% from 2004 baseline conditions			-			Salinity distribution not to from the mouth; Salinity <1 ppt above 40 km upstream of exceed TPCs for fish, the mouth; Salinity of Salinity everywhere in estuary <35; invertebrates, macrophytes and Groundwater salinity on floodplain <45. TDS of river inflow			eq			Zones A and B <1.0 m during low flow (< 1m ³ .5 ⁻¹)	ned	in an Acceptable category for contact recreation	
	er o	the Sho			Seec	5		o tes a			xce			2	ntai	ory	for
Ve Ve	nev	nger ncy ie b			ě	s an		ot t			to e			1	mai	ıteg	ate
rati	- pu	r lor que reas 200			tt.	Xie:		sh, cro			οt			بِ	beı	8 -	nbe
Nar	s.1	for I fre decr			s nc	udo		utic or fi			es			,		able ation	ad
RQO Narrative	≥ E	1.3.1 100d 100d 1se/c			tion	acro		strib Cs fo tes,	a)		riab	ота		2.	sho	ept	alth
æ	nflo 0.6	1 m s; Fl crea crea LO% ions			nicr	or m Ilgae		/ dis	ılgae		. Ya	or O		+	gens	Acc	t he
	ler i	below 1 m months; Fl not increa than 10% conditions		1	Inorganic nutrient concentrations not to exceed	I PCs Tor macropnytes and microalgae		Salinity distribution not to exceed TPCs for fish, invertebrates, macrophyte	microalgae		System variables not to exceed	IPCS TOT BIOTA		0	thog	in an Acceptable contact recreation	Habitat health adequate for
	Rj.	be me		3	<u> </u>	= E		Sal	Ē		ې څ	<u> </u>		Ç	ba.	.⊑ 5	포
												en				_	
ţo										ē		xyg	ج			8	a
Indicator										atu.		o pa	dept	2000		chia	stat
Ξ		>						oity .		per		olye	hic	sroc		ieri	丰
		Flow		Δ		2	<u> </u>	Salinity		Temperature	표	Dissolved oxygen	Secchi depth	Enterococci		Escherichia coli	Mouth state
Sub-component											System variables						S
po		»									ıriak				S		ami
		⊕			ents			>-			٦ ٧				gen)	dyn
ģ		Surface flow			Nutrients			Salinity			ster				Pathogens		Hydrodynamics
		<u> </u>		Sa			Š				<u> </u>		Í				
ent)																
pod	ı ıt'y														닕		
Component	Quality														Habitat		
	g g														Ha		
TEC	O O																
cal																	
hysi Na							Bxi1										
Biophysical Node Name							á										
8 Z																	
e re																	
Resource Name						tuary	sa (toc	Berg (Gro									
₽.							T-E01	ĮΑ									
ary																	
tern							MOT	9									
Quaternary Catchment																	
Class							II										
A V						λıε	ents∃ 8	198 IA									
_																	

IUA Class	Quaternary Catchment	RU Resourc	a	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
								Tidal variation	microalgae, macrophytes,	<10% change from present state
								Sediment	invertebrates, fish, birds and recreational use	Rathvmetrv and sediment MdØ chanse <10% from
							Sediments	Channel chane/size		baseline
								Biomass and	Phytoplankton biomass and	Blue-green algae <10% of phytoplankton cell counts,
								community	composition suitable for	Benthic microphytobenthic $< 40 \text{ mg/m}^2$ chlorophyll a, The
							Microalgae	composition of	invertebrates, fish, birds and	frequency of dinoflagellates < 5% of the total
								phytoplankton and recreational use	recreational use	phytoplankton counts
								community		
									Macrophyte cover and	Maintain the present distribution (2003-2005) and
									composition suitable for	abundance of the different plant community types and
									invertebrates, fish, birds and	estuarine nabitats (intertidal mudilats With 20sterd
							_		ופרו המנוסוומו מאם	capensis 200 ila, intertidal satt illa sil 433 ila, open pari 1159 ha. halophytic floodblain 1521 ha. xeric floodblain
										919.1 ha, reeds and sedges 586.6 ha and sedge pan 292.5
										ha), Prevent an increase in mats of macroalgae in the
										lower intertidal reaches, Reduce the area covered by
										water hyacinth (Eicchornia crassipes) in the upper reaches
								Extent distribution		by 50% compared to the present state (2003-2005),
							Macrophytes	and richness of		Prevent an increase in size of the open pan dry areas (1159
								macrophytes		ha in 2003-2005), Prevent a decrease in size of the sedge
					<u>B</u>	Biota				pan areas (293 ha in 2003-2005). Juncus maritimus, and
										waterblommetjies Aponogeton distachyos are present,
										Prevent the spread of invasive aliens in the riparian zone
										(e.g. Acacia mearnsii and Eucalyptus camaldulensis),
										Maintain intact reed and sedge stands along the banks of
										the estuary by ensuring that salinity is not greater than 20
										ppt for 3 months at 20 km from the month during
										summer, Prevent an increase in bare ground in the
										halophytic and xeric floodplain habitats by maintaining the
										present-day flooding patterns
										Retain present species richness, distribution of species and
										mix (low species abundance, high dominance) in Zones A
								Macrofauna		to the middle reaches of Zone C. One or two species will
								community	Abundance and community	always be present at high densities compared to others
							Invertebrates	composition,	composition of Invertebrates	(e.g. Pseudodiaptomus hessei, Grandidierella sp.) in these
								abundance and	suitable for fish, birds	Zones (A to C), Indicator species such as Capitella capitata,
								richness		should not dominate benthic species at any site,
										Callianassa kraussi and Upogebia africana distribution
										patterns remain similar to present state.

RQO Numeric	Retain the full complement of estuarine resident (7 species) and estuary associated marine (5 species) present in the estuary with population sizes sufficient to ensure their persistence in perpetuity, Ensure that exotic freshwater species do not increase to levels where they can exclude any more indigenous species through predation or competitive interactions, Maintain recruitment of adult and juvenile fish at present levels. This requires maintaining sufficient flow for freshwater plume (temperature, salinity and olfactory gradient) entering the sea. This implies that there should be a significant number of 0 -1-year-old fish and no missing year classes.	Retain at least 90% of the baseline species richness, abundance and diversity of the bird community determined using regression slope based on a 3-year running average
~	Retain the full complem species) and estuary ass in the estuary with poput their persistence in perpfreshwater species do no can exclude any more in predation or competitive recruitment of adult and This requires maintainin plume (temperature, salentering the sea. This in significant number of 0-year classes.	Retain at least 90% of the baseline species richn abundance and diversity of the bird community determined using regression slope based on a 3 running average
RQO Narrative	Retain the full complement of estuarine resident species) and estuary associated marine (5 species in the estuary with population sizes sufficient to their persistence in perpetuity, Ensure that exot freshwater species do not increase to levels whe composition of fish community can exclude any more indigenous species throug recruitment of adult and juvenile fish at present This requires maintaining sufficient flow for fresl plume (temperature, salinity and olfactory gradientering the sea. This implies that there should significant number of 0-1-year-old fish and no myear classes.	Health avifauna community contributing to conservation of determined using regression slope based on a 3-year running average
Indicator	Fish community composition, abundance and richness	Avifauna community composition, abundance and
Component Sub-component	Fish	Birds
Component		
TEC		
Biophysical Node Name		
Resource Name		
. v		
Quaternary Catchment		
Class		
IOA		

Table 12: Resource Quality Objectives for ESTUARIES in priority Resource Units in the Integrated Unit of Analysis A2 Langebaan

		noo			tem)	
RQO Numeric	$NO_3\!<\!1.3~mg.l^{-1}$	Salinity at the head of the lagoon <40; Rest of the lagoon 34 < Salinity < 36	$>$ 4 mg. Γ^1	Sechii depth >1 m	≤185 Enterococci/100 ml) (90th percentile, hazen system)	<500 E. coli/100 ml (90th percentile, hazen system)
RQO Narrative	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	Salinity distribution not to saceed TPCs for fish, Salinity at the here invertebrates, macrophytes and 34 < Salinity < 36 microalgae		I PCS for biota	Concentrations of waterborne	pathogens should be maintained in an Acceptable category for intermediate contact recreation
Indicator	8 NO 3	Salinity	Dissolved oxygen	Secchi depth	Enterococci	Escherichia coli
Sub-component	Nutrients	Salinity	System variables			Pathogens
Component			Quality			
TEC			∢			
Biophysical Node Name			Bxi3			
Resource Name		ueed	ləgne.	1		
₽.		70	3-2A			
Quaternary Catchment		M	0 10			
Class			II			
IUA		epsan	gue1	Z∀		

IUA Class	Quaternary R	B. B.	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
							Hydrodynamics	Tidal amplitude	Habitat health adequate for	Tidal amplitude should not change more than 10% from present state (2017)
						Habitat	Sediments	Sediment characteristics, Channel shape/size	microalgae, macrophytes, invertebrates, fish, birds and recreational use	Bathymetry and sediment MdØ change <10% from baseline
							Microalgae	Biomass and Phytoplankton b community composition suit composition of invertebrates, fis phytoplankton and recreational use benthic microalgae community	Phytoplankton biomass and composition suitable for invertebrates, fish, birds and recreational use	Maintain low phytoplankton biomass (chlorophyll- a < 20 μg/ℓ) and a diversity of phytoplankton groups.
							Macrophytes	Extent, distribution and richness of macrophytes	Extent, distribution composition suitable for and richness of invertebrates, fish, birds and recreational use	Maintain the distribution and area cover of macrophyte habitats particularly the salt marsh and seagrass. Maintain the large groundwater fed rush habitat.
						Biota	Invertebrates	Macrofauna community composition, abundance and richness	Abundance and community composition of Invertebrates suitable for fish, birds	In terms of Invertebrates Langebaan lagoon is currently in an A category. The invertebrate communities are in good health with species richness, abundances and composition scoring highly.
							Fish	Fish community composition, abundance and richness	Abundance and community composition of fish community suitable for birds	The fish community should include healthy populations of exploited fish species, specifically the harders, white stumpnose, blacktail, elf and smooth hound shark juveniles should all be present in beach seine net sampling surveys (at least 10 hauls in 3 different sites) of the nearshore areas. Adults of these species should remain the main components in the catches of line and net fisheries in the lagoon, and catch rates should remain stable or increase.
							Birds	Avifauna community composition, abundance and richness	Health avifauna community contributing to conservation of avifauna species in SA	Retain at least 90% of the baseline species richness, Health avifauna community abundance and diversity of the bird community contributing to conservation of determined using regression slope based on a 3-year avifauna species in SA running average.

Table 13: Resource Quality Objectives for ESTUARIES in priority Resource Units in the Integrated Unit of Analysis D10 Diep

	də2 IenuuA	% 08					20,			em)					20
	guA go2	% 08	.				= (u			syst	<u>-</u>			_	е -
	lut	% 08					000			zen.	ter			ron	hyll
	unr	% 08		g 1		<u></u> -	l ag			haz	sks)% t	ropi.
		% 08		O H) µg.	Į.			tile,	zen			<10	grou
o o	γeΜ	% 08	.	100		200	ilne			cent	, ha			nge	ss (c
ieri	ıydA	% 08		> :(-		ا <u>ڊ</u>	Σ			per	ıtile,			cha	mas inkt
RQO Numeric	Mar	700 %		oor		00	Jary			£	cen		tate	d Ø	bio opla
0	Feb	700 %	.	l lag		l lag	estı			(9(per		nt si	Σ	ton
8	nel	% £6	<u></u>	rton	Ļ	ton	ver			E	0th		eser	nen	ank of p
	Dec	% 08	hg.	lner	Į.g.	lner	<u>o</u>			100	9) اد	_	l pre	ni þe	topl
	voM	% 08	800	Ξ	109	Ξ				cci/	η 00	per	ron	og pi	ohyt /ers
	15O	% 08	V 	ary		ary	linit = 35			000	1/10	0 >	ge f	an /	w p div
	Months	rresinwater mnow adequate to maintain water quality and habitat suitable for flora and/MMR/MAR fauna	River inflow: <800 µg.l ⁻¹	Lower estuary (Milnerton lagoon): <1000 µg.l ⁻¹	River inflow: <60 µg.l ⁻¹	Lower estuary (Milnerton lagoon): <500 $\mu g.l^{-1}$	Salinity distribution not to exceed TPCs for fish, Average salinity in lower estuary (Milnerton lagoon) = 20, invertebrates, macrophytes and maximum = 35 microalgae		>4 mg.l ⁻¹	<185 Enterococci/100 ml) (90th percentile, hazen system)	≤500 E. coli/100 ml (90th percentile, hazen system)	Permanently open	<10% change from present state	Bathymetry and sediment MdØ change <10% from baseline	Maintain low phytoplankton biomass (chlorophyll- a < 50 µg/ℓ) and a diversity of phytoplankton groups.
	2	and and ()	<u> </u>		Œ		h bu	ā,					V	<u> </u>	2 1
		ra		Inorganic nutrient concentrations not to exceed TPCs for macrophytes and			o tes a	System variables (temperature,	pH, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	on of the state of	able		<u>1</u> 0	and	and
e V	-	adequa quality or flora		exc ; and			ot t	per	tur	3	epta Ijate		ate	rds	for rds
rati		φ for		t to ytes			sh, crop	tem	gen, and s fo	}	wa be Acce ned		nbe	ind (ble i, bit
RQO Narrative		ter Sle		ient s no oph			utic or fi: ma	les (oxyg ids ; TPC	4	s or sould an table item	-	ade 2000	fish se	bic uita uita fish
20		wa wa iitab		ions:	,		trib Ss fc tes,	iabl	soli		sho sho d in or in	3	alth	tes, al us	ktor on st tes, al us
æ	-	Fresnwater milow maintain water habitat suitable fauna		Inorganic nutrient concentrations not to exce TPCs for macrophytes and	52		Salinity distribution not to exceed TPCs for fish, invertebrates, macrophyte microalgae	var	pH, dissolved oxygen, suspended solids and turbidi not to exceed TPCs for biota	3	concelluations of water born pathogens should be maintained in an Acceptable category for intermediate contact recreation	-	Habitat health adequate for	microalgae, macrophytes, invertebrates, fish, birds and recreational use	Phytoplankton biomass and composition suitable for invertebrates, fish, birds and recreational use
	-	snw intal itat na		rgar cen s fo	5		nity eed etc	rem.	dis: pen: to e	8	hogi ntai igor tact		ortat igal	erte	top npo: erte eat
		rresny mainta habita fauna		CON	-		Sali exc inve mici	Syst	pH, sus _k not		path path mai cate		нас	inve	
		·													ınd
ō									'yge		<u>:</u>		ď	cs,	of on a
Indicator									× o	<u>:</u>	Jia C	ate	atic	t risti	and ity tion nktk
Indi							\$		lvec	000.	rick	hst	vari	nen ncte nel s/siz	ass nun nosit osit pla
		Flow		N	و	Ä	Salinity		Dissolved oxygen	Enterococci	Escherichia coli	Mouth state	Tidal variation	Sediment characteristics, Channel shape/size	Biomass and community composition of phytoplankton and benthic microalgae
+		<u> </u>		Ω	_ (Š	-		ū	ШŰ	Σ	ΙΈ	\$ 5 D 4	
nen									bles				S		
Odr		Mo							aria		S		mer	δί	a.e.
ÇOU		ce fl		ents			≥		× E		gen	-	od yr)ent	alga
Sub-component		Surface flow		Nutrients			Salinity		System variables		Pathogens	-	Hydrodynamics	Sediments	Microalgae
		Sı		ž			Sa		Ś		<u>Ф</u>	_ :	É.	Se	Σ
Component															
pon		ity					>							±	
m o		Quantity					Quality							Habitat	ta
		ď					One							На	Biota
TEC									Δ						
me															
hysi Na									Bviii5						
Biophysical Node Name								-	â						
ēž															
e ce															
Resource Name							də	! / D!	Rietvlei						
Res															
RO.								E03	D10-I						
ary															
Quaternary Catchment								ΗT	75						
uate								ור							
-															
Class									III						
IUA C								dəir	D10 E						
							,	-016	7 0 1 0						

¥ D	Class	Quaternary	₽ 2	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
								Macrophytes	Extent, distribution and richness of macrophytes	Extent, distribution composition suitable for and richness of invertebrates, fish, birds and recreational use	Maintain the distribution and area cover of macrophyte habitats particularly the salt marsh
								Invertebrates	Macrofauna community composition, abundance and richness	Abundance and community composition of Invertebrates suitable for fish, birds	Restore and maintain species richness, distribution of species and mix (low species abundance, high dominance); Indicator species such as Capitella capitata, should not dominate benthic species at any site; Callianassa kraussi and Upogebia africana distribution patterns similar to reference state.
								Fish	Fish community , composition, abundance and sirchness	Abundance and community composition of fish community suitable for birds	Restore and maintain the full complement of estuarine resident and estuary associated marine present in the estuary with population sizes sufficient to ensure their persistence in perpetuity; Ensure that exotic freshwater species do not increase to levels where they can exclude any more indigenous species through predation or competitive interactions; Maintain recruitment of adult and juvenile fish at present levels.
								Birds	Avifauna community composition, abundance and	Health avifauna community contributing to conservation of avifauna species in SA	Retain at least 90% of the baseline species richness, abundance and diversity of the bird community contributing to conservation of determined using regression slope based on a 3-year avifauna species in SA running average.

Table 14: Resource Quality Objectives for ESTUARIES in priority Resource Units in the Integrated Unit of Analysis E11 Peninsula

	IsunnA	750 %					
	dəς	750 %		a u			
	₿n∀	750 %		hor		ore	
	lut	750 %		cksl		ksh	
	unr	750 %		(ba		pac	
	γείνι	% 02T		ary		2	
္ပ	1qA	750 % 750 %	-	stu		tua	
neri	INIAL	750 %	1	erE		r es	
Z Z	ue4	750 %	-	N O N	<u></u>) we	
RQO Numeric	Jan Heb Mar May Jun Jun	% UCI	1.	4 <u>-</u>	Hg.]. L	
8	290	750 % 750 %	<u>_</u>	μg.	200		
	Nov	% 021 750 %	o O	00 1-1	·:	00	_
	150	% 021 750 %	100	^10 710	امَ	\$	
	120	% 021	River inflow: <1000 µg.l ⁻¹	Wildevoelvlei: <1000 $\mu g. l^{-1}$; Lower Estuary (backshore lagoon): <200 $\mu g. l^{-1}$	Wastewater inlow: <500 µg.l ⁻¹	Wildevoelvlei: <500 µg.l ⁻¹ ; Lower estuary (backshore	lagoon): <50 μg.l ⁻¹
		1AR	lệ.	oe : <	wat	oe	∵ ∵
	Months	IR/N Vat)	eri	dev	ste	dev	noc
	Š	MN %)	Ş.	Wil	≷	Ĭ	lage
	Freshwater inflow does not	for and and					
	S	exceed requirements maintaining water quality in habitat suitable for flora ifauna		Inorganic nutrient concentrations not to exceed	-		
ě	ф	ints uali flo		ĕ	an		
rati	>	eme ir q for		t	ytes		
Nar	l 일	quiro vate ole		ient s no	hdc		
RQO Narrative	-	rec g v iitak		ion	acro		
ž	ate	inin su		norganic nutrient	TPCs for macrophytes and	microalgae	
	shw	eed inta iitat na		rgar cen	s fo	roa	
	Fre	exceed requirements for maintaining water quality and MMMR/MAR habitat suitable for flora and (% Nat) fauna		orl Co	<u>T</u>	ш	
ţ							
Indicator							
=		_					
		Flow		DIN		DIP	
int							
oue.		`}					
Ĕ		el e			ıts		
2					Nutrients		
b-cor		facı					
Sub-cor		Surface flow					
ant Sub-cor		Surface		-	<u> </u>		
onent Sub-cor		ty Surface		-	D.		
omponent Sub-cor		Surface Surface		· · · · · · · · · · · · · · · · · · ·	ality Nut		
Component Sub-component		Quantity Surface		: :	Quality Nut		
TEC Component Sub-con		Quantity Surface		<u>:</u>	Quality Nut		
TEC		Quantity		<u>:</u>	Quality		
TEC		Quantity		= (Quality		
TEC		Quantity		<u>:</u>	Quality Nut		
		Quantity		<u>:</u>	Quality Nut		
Biophysical TEC Node Name		Quantity		± (Quality Nut		
Biophysical TEC Node Name		Quantity	PPI!/	<u>:</u>	Quality Nut		
Biophysical TEC Node Name		Quantity Bxi14 D	Ppli/	<u>:</u>	Quality Nut		
e Biophysical TEC Node Name		Quantity Bxi14 D		<u>:</u>	Quairty Nut		
RU Resource Biophysical TEC		Quantity Quantity Bxi14 D		<u>:</u>	Quairty Nut		
RU Resource Biophysical TEC		1-E04 Quantity BXi14 D	TΞ	<u>:</u>	Quality Nut		
RU Resource Biophysical TEC		Quantity Quantity Bxi14 D	TΞ	<u>:</u>	Quairty Nur		
Resource Biophysical TEC Name Node Name		1-E04 Quantity BXi14 D	TΞ	<u>:</u>	Quality Nur		
Quaternary RU Resource Biophysical TEC Catchment Name Node Name		D Quantity S22A Bxi14 D	TΞ	<u>:</u>	Quality		
RU Resource Biophysical TEC		1-E04 Quantity BXi14 D	EI G	:	Quairty Nur		

IUA Class	Quaternary Catchment	y t RU	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
							Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and maximum = 35, average salinity in Wildevoelvlei > 2 microalgae
							System variables	Dissolved oxygen	System variables not to exceed TPCs for biota	>4 mg.Γ¹
								Enterococci	Concentrations of waterborne	≤185 Enterococci/100 ml) (90th percentile, hazen system)
							Pathogens	Escherichia coli	pathogens should be maintained in an Acceptable category for full contact recreation	S500 E. coli/100 ml (90th percentile, hazen system)
							200	Mouth state		Mouth should remain open >70% of the time
							нуагоаупатіся	Tidal variation	Habitat nealth adequate for	<10% change from present state
					т	Habitat	Sediments	Sediment characteristics, Channel shape/size	invertebrates, fish, birds and recreational use	Bathymetry and sediment MdØ change <10% from baseline
								Biomass and		
							Microalgae	community Composition of phytoplankton and invertebrates, fis benthic microalgae recreational use community	iomass and able for ih, birds and	Improvement from current hypereutrophic state where toxic cyanobacteria are common and flow to the sea
					<u> </u>	Biota	Macrophytes	Extent, distribution and richness of macrophytes	Extent, distribution composition suitable for and composition suitable for invertebrates, fish, birds and recreational use	Retain present species richness, distribution of species and mix (low species abundance, high dominance); Maintain the fringing vegetation around the vleis as this is important for bank stabilisation and nutrient uptake; Improve connectivity between the sea, channel and lower vlei; Control the spread of invasive floating aquatic macrophyte species present in the vleis e.g. water fern.
							Invertebrates	Macrofauna community composition, abundance and richness	Abundance and community composition of Invertebrates suitable for fish, birds	Move from a D category to a C category. The estuary should have a viable population of Callichirus kraussi in the backwater lagoon (10/m2). In addition, the invertebrate community should include 2 other estuarine species in the canal. At least three marine invertebrate species present near the mouth.

RQO Numeric	Maintain fish assemblage that includes at least two species of mullet, <i>Liza richardsonii</i> and either/both <i>Mugil cephalus</i> and <i>Pseudomyxus capensis</i> . Substantial seasonal fluctuations in abundance of these mullet species are expected to occur, but mullet should remain more abundant than the alien freshwater species currently inhabiting the vleis.	Retain at least 90% of the baseline species richness, abundance and diversity of the bird community determined using regression slope based on a 3-year running average.
RQO Narrative	Abundance and community composition of fish community suitable for birds	Health avifauna community contributing to conservation of avifauna species in SA
Indicator	Fish community composition, abundance and richness	Avifauna community composition, abundance and richness
onent Sub-component	Fish	Birds
TEC Component		
TEC		
Biophysical Node Name		
Resource Name		
S.		
Quaternary Catchment		
Class		
ΙΩ		

Table 15: Resource Quality Objectives for ESTUARIES in priority Resource Units in the Integrated Unit of Analysis E12 Cape Flats

	IsunnA	% 1 /8										E					
	dəs	% S8										yste					
	₿uĄ	% 88										S US	em)				
	lut	% L 8										Jaze	syst				a u
	unr	% T8										ie,	en				ţ
	γεΜ	% 9᠘	-									ent	haz				the
eric	лqА	% 89										erc	tile,				of.
Ē	Mar	% 99										돭	cent				20%
RQO Numeric	Feb	% Т9	١.									6)	per				\ \ L
8	uer	% 89	-:		7		35					E	0th				do
	Dec	% 69	0 T	4	hg	-1	آ <u>ن</u>					100	6)				nain
	VOM	% †9	100	hg.	300	hg.	salin					occi,	00 n				ren
	toO	% t L	×	150	× 	100	age :					rocc	li/10				plnc
	Months	MMMR/MAR (% Nat)	River inflow: <1000 µg.l-1	Estuary: <150 µg.l-1	River inflow: <300 µg.l-1	Estuary: <100 µg.l-1	15 < Average salinity <35				>4 mg.l-1	≤185 Enterococci/100 ml) (90th percentile, hazen system)	<500 E. coli/100 ml (90th percentile, hazen system)				Mouth should remain open >20% of the time
RQO Narrative	de de la companya de	rresnwater innow arequate to maintain water quality and habitat suitable for flora and/MMR/MAR fauna.	Inorganic nutrient	concentrations not to exceed	TPCs for macrophytes and	microalgae	Salinity distribution not to	exceed TPCs for fish,	invertebrates, macrophytes and	microalgae	System variables not to exceed >4 mg.l-1 TPCs for biota	Concentrations of waterborne	pathogens should be	maintained in an Acceptable	category for intermediate	contact recreation.	Habitat health adequate for
Indicator		Flow	2	NIO	9			Salinity	Jaminey		Dissolved oxygen	Enterococci		Escherichia coli			Mouth state
Sub-component		Surface flow FI Nutrients D Salinity Salinity Salinity System variables D Pathogens E E Hydrodynamics M															
TEC Component		Quantity Su Nu Sa															
Æ							۵										
Biophysical Node Name	9XB																
Resource Name	iəlvbneZ																
₽						S0	3-Z1	Ξ.									
Quaternary Catchment						K	275)									
IUA Class							Ш										
IUA					sts	:H3	gde	15 (Ξ.								

IUA	Class	Quaternary R	Resource Name	e Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
							Sediments	Sediment characteristics, Channel shape/size	microalgae, macrophytes, invertebrates, fish, birds and recreational use	Bathymetry and sediment MdØ change <10% from baseline
							Microalgae	Biomass and community phytoplankton and invertebrates, fis benthic microalgae recreational use community	Biomass and community Phytoplankton biomass and composition of composition suitable for phytoplankton and invertebrates, fish, birds and benthic microalgae recreational use community	Maintain low phytoplankton biomass (chlorophyll- a < 20 $$ µg/ℓ) and a diversity of phytoplankton groups.
							Macrophytes	Extent, distribution and richness of macrophytes	Extent, distribution composition suitable for and richness of invertebrates, fish, birds and recreational use	Maintain and/or restore distribution and area cover of macrophyte habitats particularly salt marsh
					<u> </u>	Biota	Invertebrates	Macrofauna community composition, abundance and richness	Abundance and community composition of Invertebrates suitable for fish, birds	Restore and maintain species richness, distribution of species and mix (low species abundance, high dominance); Indicator species such as Capitella capitata, should not dominate benthic species at any site; Callianassa kraussi and Upogebia africana distribution patterns similar to reference state.
							Fish	Fish community composition, abundance and richness	Abundance and community composition of fish community suitable for birds	Restore and maintain the full complement of estuarine resident and estuary associated marine present in the estuary with population sizes sufficient to ensure their persistence in perpetuity; Ensure that exotic freshwater species do not increase to levels where they can exclude any more indigenous species through predation or competitive interactions; Maintain recruitment of adult and juvenile fish at present levels.
							Birds	Avífauna community composition, abundance and richness	Health avifauna community contributing to conservation of avifauna species in SA	Retain at least 90% of the baseline species richness, abundance and diversity of the bird community determined using regression slope based on a 3-year unning average.
										Mov Oct Mov Dec Jan Peb Mar
E12 Cape Flats	III	273 EUE 275K	E12-E05	Bxi20	۵	Quantity	Surface flow	Flow	Freshwater inflow adequate to maintain water quality and MMR/MAR habitat suitable for flora and (% Nat) fauna	% 02T
								Escherichia coli		
						Quality	Nutrients	DIN	Inorganic nutrient	River inflow: <1000 µg.I-1

IUA Class	Quaternary Catchment	B. R.	Resource Name	Biophysical Node Name	TEC	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
									concentrations not to exceed	Lower estuary: <1000 µg.l-1
								gic	TPCs for macrophytes and	River inflow: <500 µg.l-1
								<u> </u>	microalgae	Lower estuary: <500 µg.l-1
							Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae
							System variables Dissolved oxygen	Dissolved oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>4 mg.l ⁻¹
								Enterococci	Concentrations of waterborne	<185 Enterococci/100 ml) (90th percentile, hazen system)
							Pathogens	Escherichia coli	pathogens should be maintained in an Acceptable category for intermediate contact recreation	S500 E. coli/100 ml (90th percentile, hazen system)
						Habitat	Hydrodynamics	Mouth state	Habitat health adequate for microalgae, macrophytes, invertebrates, fish, birds and recreational use	Mouth should remain open >30% of the time
							Microalgae	Biomass and community phytoplankton of phytoplankton and invertebrates, fis benthic microalgae recreational use community	Biomass and community Phytoplankton biomass and composition of composition suitable for phytoplankton and invertebrates, fish, birds and benthic microalgae recreational use community	Phytoplankton biomass (measured as chlorophyll-a) <100 µg/ℓ) and a diversity of phytoplankton groups.
					ш	Biota	Macrophytes	Extent, distribution and richness of macrophytes	Extent, distribution composition suitable for and richness of invertebrates, fish, birds and recreational use	Maintain and/or restore distribution and area cover of macrophyte habitats particularly salt marsh
							Invertebrates	Macrofauna community composition, abundance and richness	Abundance and community composition of Invertebrates suitable for fish, birds	Restore and maintain species richness, distribution of species and mix (low species abundance, high dominance); Indicator species such as Capitella capitata, should not dominate benthic species at any site; Callianassa kraussi and Upogebia africana distribution patterns similar to reference state.

RQO Numeric	Restore and maintain the full complement of estuarine resident and estuary associated marine present in the estuary with population sizes sufficient to ensure their persistence in perpetuity; Ensure that exotic freshwater species do not increase to levels where they can exclude any more indigenous species through predation or competitive interactions; Maintain recruitment of adult and juvenile fish at present levels.	Retain at least 90% of the baseline species richness, abundance and diversity of the bird community abundance and diversity of the bird community avifauna species in SA running average.
RQO Narrative	Abundance and community composition of fish community suitable for birds	Health avifauna community contributing to conservation o avifauna species in SA
Indicator	Fish community composition, abundance and richness	Avífauna community composition, abundance and richness
Component Sub-component	Fish	Birds
Component		
TEC		
Biophysical Node Name		
Resource Name		
R		
Quaternary Catchment		
Class		
IUA		

Table 16: Resource Quality Objectives for ESTUARIES in priority Resource Units in the Integrated Unit of Analysis D6 Eerste

	ľ	eunnA	750 %								Œ					
		dəς	750 %								/ste					
		₿uĄ	750 %								s ua			em)		
		lut	750 %					ь			haze		1	syst		
		unr	750 %					33			ile, l			i en		
		γεΜ	750 %	-				E n			ent			naz		
eri.	<u> </u>	лqА	750 %	-				xi m			perc		-	tille,		
=	-	Mar	750 %	-				E,			th l			cen		
ROO Numeric	5	Teb Teb	% 07T 750 % 750 %	-	7_	ļ		>10			6) (,	ber		
8	-	Dec	% 02T	<u></u>) pg	- 1	H8:-	wer			E		2)Otn		
		voN	% 021 % 07T	<u>n</u>	00	gh (3	0 0			/10(-	<u></u>		_
		toO	% 021 750 %	100	∵ 	<500		ity ii			occi		Š	200		obe
		1-0		 §	uar	 8	nar	ali			roc		7	1/10		Ę
		S	MAF.	infli	est	inflo	est	ge s		<u></u> :	Ente			п С		aner
		Months	MMR/N (% Nat)	River inflow: <1000 µg.l ⁻¹	Lower estuary: <1000 µg.l ⁻¹	River inflow: <500 µg.l ⁻¹	Lower estuary: <500 µg.i	/era		>4 mg.l- ¹	<185 Enterococci/100 ml) (90th percentile, hazen system)		8	SSUU E. COII/ LUU MI (9Uth percentile, nazen system)		Permanently open
		Σ	resinwater innow adequate to maintain water quality and habitat suitable for flora and/MMR/MAR fauna	<u>~</u>	2	₩.		Salinity distribution not to exceed TPCs for fish, Average salinity in lower >10, maximum = 35 invertebrates, macrophytes and						vi		<u>a</u>
			resinwater iniow auequate to maintain water quality and habitat suitable for flora and fauna		eq			s an		peed	Concentrations of waterborne		<u>e</u>			Ē
			llity lora		exce	pue		t to		e K	rbo		tab	ب		e fo
į		-	aue qua or f		to e	es s		not ,r		t to	vate	ē	cep	ntac		quat
<u></u>	5		e e o	l t	not	phy		tion r fish nacı		ss nc	of V	q pır	n A	00		adec
ROO Narrative	2		wat wat tabl	utrie	ons	cro		ribu s for es, r		able	ions	shou	i.	r ful		돧
2	2	į	rresnwater innow adequat maintain water quality habitat suitable for flora fauna	Inorganic nutrient	concentrations not to exceed	TPCs for macrophytes and	IIICI Oalgae	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophyte	microalgae	System variabl TPCs for biota	trat	pathogens should be	maintained in an Acceptable	category for full contact	ion	Habitat health adequate for
		-	onw intai iitat na	gan	cen	s fo	2	nity eed erte	roal	tem S fo	cen	hog	ntai	egor	recreation	itat
		,	rresnw mainta habital fauna	<u>n</u>	con	TPC	=	Sali exc inve	mic	System variables not to exceed TPCs for biota	S	patl	mai	cate	reci	Hab
į	3									xyge			-	Escnericnia coli		a
Indicator	5									o pa	2000		-	cula		stat
2			>					nity		olve.	Enterococci			iel		th
			Flow	2	5	PP		Salinity		Diss	Ent			ESCI		Mouth state
<u>+</u>	•									es						
Š	5	Surface flow Nutrients DIN DIP Salinity Salinity Salinity Salinity Enterococci Enterococci Enterococci Mouth state Hydrodynamics Mouth state														
Ē	5		e flo		4	IIIS				ا ۷			gens			λλ
Sub-component	2		Surface flow			Nutrients		Salinity		sten			Pathogens			dro
			Sul	-	2	2		Sal		Sys			Ъа			f
Component																
20	5		ity						>							Ħ
Ę	5		Quantity						Quality							Habitat
			<u> </u>						đ							土
T.	1							Δ								
-	иe															
Biophysical	Node Name	Bxi3														
iop	oge															
	Ž															
Resource	a															
nos	Name	Eerste Estuary														
2	2					g	0	D9-E								
ar.	i															
Quaternary	Catchment						Н	279								
(uat	atcl															
Class	3							Ш								
ΔII								27.06								
=	2					ət	s٦	D6 E6								

		ı				
RQO Numeric	<10% change from present state	Maintain low phytoplankton biomass (chlorophyll- a < 20 µg/ℓ) and a diversity of phytoplankton groups.	Restore and maintain the distribution and area cover of macrophyte habitats particularly salt marsh	Restore and maintain species richness, distribution of species and mix (low species abundance, high dominance); Indicator species such as Capitella capitata, should not dominate benthic species at any site; Callianassa kraussi and Upogebia africana distribution patterns similar to reference state.	Restore and maintain the full complement of estuarine resident and estuary associated marine present in the estuary with population sizes sufficient to ensure their persistence in perpetuity; Ensure that exotic freshwater species do not increase to levels where they can exclude any more indigenous species through predation or competitive interactions; Maintain recruitment of adult and juvenile fish at present levels.	Retain at least 90% of the baseline species richness, abundance and diversity of the bird community determined using regression slope based on a 3-year running average.
RQO Narrative	microalgae, macrophytes, invertebrates, fish, birds and recreational use	Biomass and Phytoplankton biomass and community Composition of composition suitable for phytoplankton and invertebrates, fish, birds and benthic microalgae recreational use community	Macrophyte cover and composition suitable for invertebrates, fish, birds and recreational use	Abundance and community composition of Invertebrates suitable for fish, birds	Abundance and community composition of fish community suitable for birds	Health avifauna community contributing to conservation of avifauna species in SA
Indicator	Tidal variation	Biomass and Community Composition of phytoplankton and invertebrates, fis benthic microalgae recreational use community	Extent, distribution and richness of macrophytes	Macrofauna community composition, abundance and	Fish community composition, abundance and richness	Avifauna community composition, abundance and
Sub-component		Microalgae	Macrophytes	Invertebrates	Fish	Birds
Component				Biota		
TEC						
Biophysical Node Name						
Resource						
S T						
Quaternary Catchment						
SS						
Class						

Table 17: Resource Quality Objectives for ESTUARIES in priority Resource Units in the Integrated Unit of Analysis D7 Sir Lowry's

	IsunnA	% 9 <i>L</i>						<u>_</u>						0		
	dəç	% 88						ten						< 20		o f o
	BuA	% 06				: 35		sks	Ê			٤		- a		ver
	Int	% 68				E E		zen	ster			fror		<u>ال</u> م .		a co
	unr	% 8 <i>L</i>				i E i		, ha	Sys (%0		orop ups		are
	YeM	% 6t				max		<185 Enterococci/100 ml) (90th percentile, hazen system)	<500 E. coli/100 ml (90th percentile, hazen system)			Bathymetry and sediment MdØ change <10% from baseline		Maintain low phytoplankton biomass (chlorophyll- a < 20 μg/ θ) and a diversity of phytoplankton groups.		Restore and maintain the distribution and area cover of macrophyte habitats particularly salt marsh
ي.	1qA	% SE				.5, r		cer	, h			ange		ss (ton		on a
RQO Numeric	1sM	% ST						pe	ntilk		a)	cho		ank		outi y sa
Ž	Feb					nan		Oth	rcei		<10% change from present state	Мрl		bid a		strik
ē	Jan	% OT		÷.		est		6) (1	b pe		nts	± ≥		ton		e dis
~	Dec	% 9T	7_	Lower estuary: <300 µg.Γ ¹	River inflow: <80 µg.l ⁻¹ Lower estuary: <80 µg.l ⁻¹	Wer		ш	30th		ese	mer		lank of p		the par
	voN	% L7	River inflow: <350 µg.l ⁻¹	8	River inflow: <80 µg.l ⁻¹ Lower estuary: <80 µg	<u> </u>		/100	5) Lu	ے	n pr	edir		top sity		tain
	_	% 9S	350	×.	08 %	`		occi,	00 0	Permanently open	fron	s pu		phy		abit
	150	% £8	×	Jary	w: ^	i <u>i</u>		rocc	li/10	tly	. ag	, aı		ow a di		id π Fe h
		1AR	Įģ.	estr	iflo estu	e Sa	<u>-</u> -	ıteı	00	.uər	han	netr e		in lo		s an
	Months	IR/N (at)	i-	/er	er ir	rag	ng.	5 E	0 E	maı	%	Bathyme baseline		inta (2) a		tore
		MMR/N (% Nat)	Rive	ľ	Rive Lov	Ave	>4 mg.l ⁻¹	≥18	≥50	Per	<10	Bat bas		Maj µg/		Res
	1	rresnwater inflow adequate to maintain water quality and habitat suitable for flora and MMR/MAR fauna				Salinity distribution not to exceed TPCs for fish, Average salinity in lower estuary >15, maximum = 35 microalgae		0	J							
		ra v		eed	~	es a	xce	2	p d		5	and	7	and		and
e		adequat quality or flora		exc	anc	ot to	(e)	2	pta	3	ite i	ds 9		for ds		for ds (
aţį		, ad qu for		t to	/tes	n ng sh, srop	ott	10.50	be Vcce ned	}	d d	ğ jağ		ble i		and and ble to b
RQO Narrative		le rem	ent	0 0	hdo	utio r fis mac	es n	4	uld an A terr tion	2	ade	fish	-	uital Iish fish	e)	over Lital fish
٥]	wat wat itab	utri	ions	acro	tribu Ss fo	iabl		sho In a Irin	+	<u> </u>	ines, res, al us		n su es, '	sn le	e cc n su tes,
2		Fresnwater Inflow maintain water habitat suitable fauna	norganic nutrient	concentrations not to exceed	TPCs for macrophytes and microalgae	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophyte microalgae	System variables not to exceed TPCs for biota	Concentrations of waterborns	pathogens should be maintained in an Acceptable category for intermediate contact recreation	٤	nabitat neaith adequate ior microalgae imacrophytes	incroagae, macrophyes, invertebrates, fish, birds and recreational use	1	rny topianistori biolinass and composition suitable for invertebrates, fish, birds and	iona	Macrophyte cover and composition suitable for invertebrates, fish, birds and recreational use
		ntai ntai itat aa	gan	cen.	s fo roal	sed sed rrtel	em s fo	9	ntai ntai gor tact	1	itat Sool	rtel	-	pos	eati	rop pos rrtel eati
	3	Fresny mainta habita fauna	nor	con	TPC	Salir exce inve	Syst	Š	path mai cate	2	nab min	inve	į	con	recr	Mac corr inve
		<u> </u>												pu	gae	io
>							Vgel		i <u>i</u>		ے	cs,		of on a	oalg	but
Indicator							ŏ	cci	ia c	ate	atio	t ristir	and	ion ion nkto	nicr it	istri iess ytes
뎔						≥	Ved	000	rich	h st	vari	cter cter oel	ass a	osit plan	ic n	t, di ichn oph
_		Flow	2	z	۵	Salinity	Dissolved oxygen	Enterococci	Escherichia coli	Mouth state	Tidal variation	Sediment characteristics, Channel shape/size	Biomass and	composition of composition suitable for phytoplankton and invertebrates, fish, birds and	benthic microalgae recreational use community	Extent, distribution composition suitable for and richness of invertebrates, fish, bird recreational use
		ᇤ		2	DIP	S		ш	й	Σ	ΙĘ	8 2 2 2	B	3 8 2	å ö	3 5 6
ent							oles				S					
pod		MO					ariak		S	3	<u> </u>	S		ē		/tes
5		e L		4	2	>-	٦ ٧		gen		E n	ent		algo		hdc
Sub-component	Surface flow Nutrients Salinity System variables System variables Sediments Microalgae Microalgae															
ponent																
<u> </u>	tat tat															
Comp	Quantii															
TEC	۵															
ے e																
Biophysical Node Name	8×i4															
de la	B _X .															
ĕ 8																
e,																
Resource Name	Lourens Estuary															
Sesc Na	Lourens Estuary															
2									DJ-E0							
any																
Quaternary Catchment									פזזו							
Qual Cato																
Class									II							
. A⊡								,	D7 Sir Lov							

∞
က

RQO Numeric	Restore and maintain species richness, distribution of species and mix (low species abundance, high dominance); Indicator species such as Capitella capitata, should not dominate benthic species at any site; Callianassa kraussi and Upogebia africana distribution patterns similar to reference state.	Restore and maintain the full complement of estuarine resident and estuary associated marine present in the estuary with population sizes sufficient to ensure their persistence in perpetuity; Ensure that exotic freshwater species do not increase to levels where they can exclude any more indigenous species through predation or competitive interactions; Maintain recruitment of adult and juvenile fish at present levels.	Retain at least 90% of the baseline species richness, abundance and diversity of the bird community determined using regression slope based on a 3-year running average.
RQO Narrative	Abundance and community composition of Invertebrates suitable for fish, birds	Abundance and community composition of fish community suitable for birds	Health avifauna community contributing to conservation of avifauna species in SA
Indicator	Macrofauna community composition, abundance and richness	Fish community composition, abundance and richness	Avifauna community composition, abundance and
Sub-component	Invertebrates	Fish	Birds
Component			
TEC			
Biophysical Node Name			
Resource Name			
. R			
Quaternary Catchment			
IUA Class			

Table 18: Resource Quality Objectives for DAMS in priority Resource Units in the Berg Catchment

Quaternary Catchment	ent	P.	Resource Name	Component	RU Resource Name Component Sub-component	Indicator	RQO Narrative	
							During the dry season dam levels Months	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual
				Quantity	Low flows	Dam level Flow releases: Berg EWR1 in G10A nMAR = 141.68 million m3/a	must be sufficient for releases for irrigation and human use and protection of ecosystem function downstream. Water intake temperature to be managed.	Maintenance low flows for the form of the
G10A		D8-D07	Berg Dam		High flows	privati. 120.00 million m3/a REC = C category	During the wet season high flow Maintenance ecological releases are made high flows according to the decision-support (million cubic system.	Maintenance high flows high flows 0.000 0.
						Ortho-phosphate (PO ₄ -P)	The system must be maintained in a mesotrophic (moderately	≤ 0.015 milligrams/litre (50 th percentile)
				Quality	Nutrients	Total inorganic nitrogen (TIN)1	enriched) state or better to protect against nuisance algal blooms and excessive water treatment costs.	≤ 0.07 milligrams/litre (50 th percentile)

eric	(a)							
RQO Numeric	s 30 milliSiemens/metre (95 th percentile)	$5.5 \ge pH \le 7.5 (5^{th} and 95^{th} percentiles)$	s 130 counts/100ml (95 th percentile)	% of dam volume. No EWR site	< 0.005 milligrams/litre (50 th percentile)	s 0.50 milligrams/litre (50 th percentile)	% of dam volume. No EWR site	< 0.025 milligrams/litre (50 th percentile)
RQO Narrative	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem, are maintained in an Ideal category for domestic and irrigation water supply.	The water in the dam is naturally acidic and it should be maintained within the historical range.	The dam must be maintained in a state that is in an Ideal category for full contact recreation to protect its domestic water supply purpose.	Dam levels must be sufficient for urban and industrial use water supply, and to supply some irrigators.	The reservoir is currently in a Natural state and should be kept in an oligotrophic state. for supply to the City of Cape Town and	Paarl. As a key domestic water supply reservoir this status should be maintained and protected. The reservoir is currently in a Natural state and should be kept in an oligotrophic state. for supply to the City of Cape Town and Paarl. As a key domestic water supply reservoir this status should be maintained and protected.	Dam levels must be sufficient for urban and industrial use water supply via the two WTWs, and releases to Berg River for human and irrigation use.	The reservoir is currently in an
Indicator	Electrical conductivity	Hd	E coli	Dam levels	Ortho-phosphate (PO ₄ -P) Total inorganic nitrogen (TIN)	Ortho-phosphate (PO ₄ -P) Total inorganic nitrogen (TIN)	Dam levels	Ortho-phosphate
Sub-component	Salts	System variables	Pathogens	Low flows		Nutrients	Low flows	Nutrients
Component				Quantity		Quality	Quantity	Quality
Resource Name						Wemmershoek Dam	Voelvlei Dam	
rnary RU						00-80 80	B4-D03	
Quaternary Catchment						G10B	G10F	
IUA Class					9125	= D8 Upper	Fower Berg	- C

IUA Class Quaternary RU Resource Name Component Sub-component	RU Resource Name Component	Resource Name Component		Sub-compon	ent	Indicator	RQO Narrative	RQO Numeric
				-		Total inorganic nitrogen (TIN)		≤ 0.70 milligrams/litre (50 th percentile)
Salts						Electrical conductivity	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem, and are in an Ideal category for domestic water use and for irrigation water use.	≤ 30 milliSiemens/metre (95 th percentile)
Pathogens	Pathogens	Pathogens	Pathogens	Pathogens		E coli, Faecal coliforms	The system must be maintained in a state that is in an Acceptable category for intermediate contact recreation	≤ 2000 counts/100ml (95 th percentile)
Quantity Low flows				Low flows		Dam levels	Water levels in the weir must be sufficient for supply for human use % of dam volume via the Withoogte WTW.	% of dam volume
						Ortho-phosphate (PO ₄ -P) Total inorganic nitrogen (TIN)	The reservoir is currently in a Eutrophic state and should be in the short term be maintained in its current state or better. The long-	The reservoir is currently in a Eutrophic state and should be in the short term be maintained in its current state or better. The long-
	Misverstand	Misverstand	Nutrients	Nutrients		Ortho-phosphate (PO ₄ -P) Total inorganic nitrogen (TIN)	term objective should be to improve the nutrient status to a mesotrophic state or better to protect the water supply to the West Coast towns.	≤ 2.5 milligrams/litre (50 th percentile)
G10K G4 Weir Quality Salts	Weir Quality	Weir Quality		Salts		Electrical conductivity	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem, and are in an Ideal category for domestic and industrial water use, and for irrigation water use.	≤ 70 milliSiemens/metre (95 th percentile)
						E. coli		< 1000 counts/100 ml (95 th percentile)
Pathogens	Pathogens	Pathogens	Pathogens	Pathogens		Faecal coliforms	in a state that is safe for domestic water use (with treatment) and for intermediate contact recreation as the dam is a popular recreation venue.	in a state that is safe for domestic water use (with treatment) and for intermediate contact recreation as \leq 1000 counts/100 ml (95 th percentile) the dam is a popular recreation venue.

RU Resource Name	ne Component	t Sub-component	Indicator	RQO Narrative	RQO Numeric
		High flows		High flow ecological releases should be made during the wet season to meet flood requirements, but within the constraints of the existing outlet structure, and utilising spills where possible.	Maintenance high flows high flows 0.000
		Ni-trion+c	Ortho-phosphate (PO ₄ -P)	The reservoir must be maintained in a mesotrophic state or better.	≤ 0.015 milligrams/litre (50 th percentile)
		ממוופוו	Total inorganic nitrogen (TIN)	inorganic Salt levels must be maintained at (TIN) concentrations where they do not	≤ 0.07 milligrams/litre (50 th percentile)
	Quality	Salts	Electrical conductivity	impact negatively on the ecosystem, and are in an Ideal category for domestic and industrial water use.	s 30 milliSiemens/metre (95 th percentile)
			E. coli	The reservoir must be maintained	The reservoir must be maintained ≤ 130 counts/100 ml (95 th percentile)
		Pathogens	Faecal coliforms	in a state that is safe for contact recreation.	< 130 counts/100 ml (95 th percentile)

Table 19: Resource Quality Objectives for GROUNDWATER in priority Resource Units in the Berg Catchment

IUA	Class	Quaternary Catchment	RU	Resource Name	Component	Sub Component	Indicator/ Measure	RQO Narrative	RQO Numeric
					Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
		A019	4-Paarl-Upper Berg	Groundwater (all)		Low flow in river	Compliance with the low flow requirements in the river (as per riverine RQO)	Maintain (groundwater component of) the low flow requirements in the river	Maintenance low flow requirements: 29.177 Mm3/a (34.39 %MAR) at G1H076 (Bvii13); 27.421 Mm3/a (19.35 %MAR) at G1H077 (Bviii1)
						Nutrients	NO ₃ (as N)	Groundwater should be fit for	< 3.3 mg/l
erg						Salts	EC	domestic use after treatment;	< 70 mS/m
st B					Quality	System variable	Нф	and groundwater quality shall	5.2 – 8.4
ddı	II					Pathogens	E-coli	not show a deteriorating trend	0 counts / 100 ml
า 80						Pathogens	Total Coliform	from natural background	<10 counts / 100ml
3					Quantity	Discharge	Relative water levels between groundwater and suface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
		@10B	4-Paarl-Upper Berg	Groundwater (all)	Quantity	Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
						Nutrients	NO ₃ (as N)	Groundwater should be fit for	< 3.3 mg/l
					_	Salts	EC	domestic use after treatment;	< 70 mS/m
					Quality	System variable	рН	and groundwater quality shall	5.2 – 8.4
						Pathogens	E-coli	trend	0 counts / 100 ml
						Pathogens	Total Coliform	from natural background	<10 counts / 100ml
C5 Berg Tributaries	II	G70E	5-Tulbagh Valley (all)	Groundwater (all)	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a

Class	Quaternary Catchment	RU	Resource Name	Component	Sub Component	Indicator/ Measure	RQO Narrative	RQO Numeric
				Quantity	Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
					Pathogens	E-coli	Groundwater should be fit for	0 counts / 100 ml
				Quality	Pathogens	Total Coliform	domestic use after treatment; and groundwater quality shall not show a deteriorating trend from natural background	<10 counts / 100ml
					Nutrients	NO3 (as N)		n/a
				<u>;;</u>	System variable	На	domestic use after treatment;	n/a
				Quality	Salts	EC	-	n/a
					Discharge	Relative water levels between groundwater and suface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
	ſ		Groundwater (all)	Quantity		Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
III	019	6-24 Rivers			Low flow in river	Compliance with the low flow Maintain (groundwater requirements in the river (as per riverine component of) the low flow RQO)		Maintenance low flow requirements: 114.338 Mm3/a (13.28 %MAR) at G1H013 (Bvii6)
					System variable	На		5.2 – 8.1
				Quality	Pathogens	E-coli		0 counts / 100 ml
					Pathogens	Total Coliform		<10 counts / 100ml
			Groundwater		Nutrients	NO3 (as N)	and groundwater cuality shall	< 6.9 mg/l
			(Cenozoic coastal sand)	Quality	Salts	EC	-	< 942 mS/m
			Groundwater		Nutrients	NO3 (as N)		<11.0 mg/l
			(Basement)	Quality	Salts	EC		< 875 mS/m

G10M	RU	Resource Name	Component	Sub Component	Indicator/ Measure	RQO Narrative	RQO Numeric
GTOM				Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
e10M				Groundwater level Water level	Water level	Minimum water level in abstraction boreholes within 2.5km from the ocean to avoid saline intrusion	>1 mamsl
	Coast	-	Quantity		Relative water levels between groundwater and suface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
				Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
					Compliance with the groundwater flow requirements to the Langebaan Lagoon	Compliance to the groundwater flow requirements to the Langebaan Lagoon, as per estuary RQO requirement	Groundwater inflow not <10% of present day (2017) rate
					Compliance with the groundwater flow requirements to the Langebaan Lagoon	Compliance to the groundwater flow requirements to the Langebaan Lagoon, as per estuary RQO requirement	Ground water level not <10% below present day (2017) level
10M 8-West Coast	Coast	Groundwater (Cenozoic coastal sand)	Quality	Nutrients	NO3 (as N)	Groundwater should be fit for domestic use after treatment; and groundwater quality shall not show a deteriorating trend	< 11.0 mg/l
9				System variable	Hd	from natural background	7.1 - 8.4
		Groundwater	Quality	Nutrients	NO3 (as N)	Groundwater should be fit for	< 11.0 mg/l

	Resource Name	Component	Sub Component	Indicator/ Measure	RQO Narrative	RQO Numeric
(Basement)	t)		Salts	EC	domestic use after treatment; and groundwater quality shall not show a deteriorating trend from natural background	< 1571 mS/m
Groundwater	ter		Salts	PO_4	Groundwater should be fit for	< 0.3 mg/l
(all)		<u>:</u>	Pathogens	E-coli	domestic use after treatment;	0 counts / 100 ml
		Quality	Pathogens	Total Coliform	and groundwater quairty snail not show a deteriorating trend from natural background	<10 counts / 100ml
			Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
Groundwater (all)		Quantity	-	Relative water levels between groundwater and suface water (in mams1)	The natural gradient between groundwater and surface water should be maintained	n/a
			Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
Groundwater (Cenozoic coastal sand)	_		Nutrients	NO3 (as N)	Groundwater should be fit for domestic use after treatment; and groundwater quality shall	< 8.2 mg/l
			Salts	EC	not show a deteriorating trend from natural background	< 520 mS/m
Groundwater (Basement)		Quality	Nutrients	NO3 (as N)		< 11.0 mg/l
			Salts	EC	domestic use after treatment:	< 899 mS/m
Groundwater	_		Salts	PO_4	and groundwater quality shall	< 0.3 mg/l
(all)			System variable	Н	not show a deteriorating trend	6.7 - 8.3
			A - 44 - 0	E-coli	from natural background	0 counts / 100 ml
			Pathogens	Total Coliform		<10 counts / 100ml

IUA Cla	Class Catchment	riy RU	Resource	Component	Sub Component	Indicator/ Measure	RQO Narrative	RQO Numeric
					Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
					Low flow in river	Compliance with the low flow Maintain (groundwater requirements in the river (as per riverine component of) the low flow RQO)		Maintenance low flow requirements: 0.578 (6.22 %MAR) at node Biv6 (no gauge)
			Superficial aquifers	Quantity	Discharge	Relative water levels between groundwater and suface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
			Groundwater		Nutrients	NO3 (as N)		< 7.1 mg/l
			(cenozoic coastal sand)		Salts	EC	13 cd b	< 358 mS/m
			Groundwater		Nutrients	NO3 (as N)	domestic use after treatment:	< 6.4 mg/l
			(Basement)	Quality	Salts	EC	and groundwater quality shall	< 617 mS/m
					System variable	На	not show a deteriorating trend	6.3 – 8.6
			Groundwater		Pathogens	E-coli	from natural background	0 counts / 100 ml
			(all)		Pathogens	Total Coliform		<10 counts / 100ml
	3				Groundwater level Water level	Water level	Minimum water level in abstraction boreholes within 2.5km from the ocean to avoid saline intrusion	>1 mamsl
III	255C'	2-Cape Flats	Groundwater (all)	Quantity	Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
	9				Low flow in river	Compliance with the lowflow requirements in the river	Maintain (groundwater component of) the low flow requirements in the river, as per surface water RQO requirement	Maintenance low flow: 0.348 Mm3/a (7.74 %MAR) at Bvii7 (no gauge)

IUA	Class	IUA Class Quaternary	RU	Resource Name	Component	Sub Component	Indicator/ Measure	RQO Narrative	RQO Numeric
				Superficial aquifers	Quantity	Discharge	Relative water levels between groundwater and suface water (in mamsl)	The natural gradient between groundwater and surface water n/a should be maintained	n/a
				Groundwater		Nutrients	NO3 (as N)		< 9.2 mg/l
				(ceriozoic		System variable	На		6.6 – 8.4
						Salts	EC		< 180 mS/m
				Groundwater		Nutrients	NO3 (as N)		< 11.0 mg/l
				(Basement)	Quality	Salts	EC	domestic use after treatment; and groundwater quality shall	< 953 mS/m
				Groundwater			E-coli	from natural background	0 counts / 100 ml
				(all)		Pathogens	Total Coliform		<10 counts / 100ml

GENERAL NOTICES • ALGEMENE KENNISGEWINGS

DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES NOTICE 263 OF 2019

PLANT IMPROVEMENT ACT, 1976 (ACT No. 53 OF 1976)

REGULATIONS RELATING TO ESTABLISHMENTS, VARIETIES, PLANTS AND PROPAGATING MATERIAL: AMENDMENT

The Minister of Agriculture, Forestry and Fisheries, acting under Section 34 of the Plant Improvement Act, 1976 (Act No. 53 of 1976), has made the following regulations in the Schedule.

SCHEDULE

Definition

1. In this Schedule "the Regulations" means the regulations published by Government Notice No. R. 1064 of 23 May 1980, as amended by Government Notices Nos. R. 1621 of 22 July 1983, R. 2173 of 28 September 1984, R. 1287 of 14 June 1985 (as corrected by Government Notice No. R. 1524 of 12 July 1985), R. 1522 of 12 July 1985, R. 256 of 14 February 1986, R. 1489 of 11 July 1986, R. 1903 of 12 September 1986, R. 1389 of 26 June 1987, R. 1700 of 7 August 1987, R. 86 of 22 January 1988, R. 2496 of 9 December 1988, R. 1518 of 14 July 1989, (as corrected by Government Notice No. R. 1976 of 15 September 1989), R. 2092 of 29 September 1989, R. 76 of 18 January 1991, R. 1638 of 12 July 1991, (as corrected by Government Notice No. R. 1971 of 16 August 1991), R. 2119 of 24 July 1992, R. 2618 of 18 September 1992, R. 891 of 28 May 1993, R. 1590 of 27 August 1993, R. 2057 of 29 October 1993, R. 513 of 18 March 1994, R. 1465 of 26 August 1994, R. 174 of 10 February 1995 (as corrected by Government Notice No. R. 319 of 3 March 1995), R. 1976 of 22 December 1995, R. 1177 of 19 July 1996, R. 97 of 24 January 1997, R. 1011 of 1 August 1997, R. 866 of 3 July 1998 (as corrected by Government Notice No. R. 949 of 24 July 1998), R. 1284 of 16 October 1998, R. 1015 of 27 August 1999, R. 232 of 17 March 2000, R. 919 of 15 September 2000, R. 1207 of 1 December 2000, R. 430 of 25 May 2001, R. 19 of 11 January 2002, R. 547 of 10 May 2002, R.1 of 3 January 2003, R. 410 of 28 March 2003, R. 577 of 2 May 2003, R. 185 of 11 March 2005, R. 477 of 27 May 2005; R. 849 of 2 September 2005 (as corrected by Government Notice No. R. 928 of 30 September 2005), R. 131 of 17 February 2006, R. 187 of 3 March 2006, R. 770 of 4 August 2006, R. 45 of 26 January 2007, R. 56 of 2 February 2007, R. 521 of 29 June 2007, R. 430 of 11 April 2008, R. 381 of 17 April 2009, R. 99 of 19 February 2010, R. 100 of 19 February 2010, R. 928 of 22 October 2010, R. 161 of 4 March 2011, R. 86 of 10 February 2012, R. 95 of 15 February 2013, R. 312 of 26 April 2013, R. 88 of 14 February 2014, R. 81 of 13 February 2015 (as corrected by No. 191 of 13 March 2015), No. 2 of 19 February 2016, No. 182 of 3 March 2017, No. 970 of 8 September 2017 and No. 1335 of 8 December 2017.

Substitution of Table 8 of the Regulations

2. The table in Annexure A is hereby substituting Table 8 of the Regulations:

DEPARTEMENT VAN LANDBOU, BOSBOU EN VISSERYE KENNISGEWING 263 VAN 2019

PLANTVERBETERINGSWET, 1976 (WET No. 53 VAN 1976)

REGULASIES BETREFFENDE ONDERNEMINGS, VARIËTEITE, PLANTE EN VOORTPLANTINGSMATERIAAL: WYSIGING

Die Minister van Landbou, Bosbou en Visserye, handelende kragtens Artikel 34 van die Plantverbeteringswet, 1976 (Wet No. 53 van 1976), het die regulasies in die Bylae uitgevaardig.

BYLAE

Woordomskrywing

1. In hierdie Bylae beteken "die Regulasies" die regulasies gepubliseer by Goewermentskennisgewing No. R. 1064 van 23 Mei 1980, soos gewysig deur Goewermentskennisgewing Nos. R. 1621 van 22 Julie 1983, R. 2173 van 28 September 1984, R. 1287 van 14 Junie 1985 (soos verbeter deur R. 1524 van 12 Julie 1985), R. 1522 van 12 Julie 1985, R. 256 van 14 Februarie 1986, R. 1489 van 11 Julie 1986, R. 1903 van 12 September 1986, R. 1389 van 26 Junie 1987, R. 1700 van 7 Augustus 1987, R. 86 van 22 Januarie 1988, R. 2496 van 9 December 1988, R. 1518 van 14 Julie 1989 (soos verbeter deur R. 1976 van 15 September 1989), R. 2092 van 29 September 1989, R. 76 van 18 Januarie 1991, R. 1638 van 12 Julie 1991 (soos verbeter deur R. 1971 van 16 Augustus 1991), R. 2119 van 24 Julie 1992, R. 2618 van 18 September 1992, R. 891 van 28 Mei 1993, R. 1590 van 27 Augustus 1993, R. 2057 van 29 Oktober 1993, R. 513 van 18 Maart 1994, R. 1465 van 26 Augustus 1994, R.174 van 10 Februarie 1995 (soos verbeter deur by R. 319 van 3 Maart 1995), R. 1976 van 22 December 1995, R. 1177 van 19 Julie 1996, R. 97 van 24 Januarie 1997, R. 1011 van 1 Augustus 1997, R. 866 van 3 Julie 1998 (soos verbeter deur R. 949 van 24 Julie 1998), R. 1284 van 16 Oktober 1998, R. 1015 van 27 Augustus1999, R. 232 van 17 Maart 2000, R. 919 van 15 September 2000, R.1207 van 1 December 2000, R. 430 van 25 Mei 2001, R. 19 van 11 Januarie 2002, R. 547 van 10 Mei 2002, R. 1 van 3 Januarie 2003, R. 410 van 28 Maart 2003, R. 577 van 2 Mei 2003, R. 185 van 11 Maart 2005, R. 477 van 27 Mei 2005, R. 849 van 2 September 2005 (soos verbeter deur R. 928 van 30 September 2005), R. 131 van 17 Februarie 2006, R. 187 van 3 Maart 2006, R. 770 van 4 Augustus 2006, R. 45 van 26 Januarie 2007, R. 56 van 2 Februarie 2007, R. 521 van 29 Junie 2007, R. 430 van 11 April 2008, R. 381 of 17 April 2009, R. 99 van 19 Februarie 2010, R. 100 van 19 Februarie 2010, R. 928 van 22 Oktober 2010, R. 161 van 4 Maart 2011, R. 86 van 10 Februarie 2012, R. 95 van 15 Februarie 2013, R. 312 van 26 April 2013, R. 88 van 14 Februarie 2014, R. 81 van 13 February 2015 (soos verbeter deur No. 191 van 13 Maart 2015), No. 2 van 19 Februarie 2016, No. 182 van 3 Maart 2017, No. 970 van 8 September 2017 en No. 1335 van 8 Desember 2017.

Vervanging van Tabel 8 van die Regulasies

2. Tabel 8 van die Regulasies word hiermee deur die tabel in Aanhangsel A vervang:

ANNEXURE A / AANHANGSEL A

"TABLE 8/ TABEL 8

VARIETIES IN RESPECT OF WHICH CERTIFICATION IS REQUIRED VARIËTEITE WAARVAN SERTIFISERING VEREIS WORD

		Denomination of	Date of
Botanical name	Common name	variety/	commencement /
Botaniese naam	Gewone naam	Benaming van	Datum van
Botamese maam	Gewone maam	variëteit	inwerkingtreding
Allium cepa L	Onion / Ui	* Capricio	
		Radium	1988-06-01
		Rion 1	
		Rion 2	
		Rion 3	
		Rion 4	
Arachis hypogaea L	Groundnut / Grondboon	Akwa	1997-07-01
/ wacme mypogaca E	Groundriat / Grondboom	Anel	1997-07-01
		* ARC-AkwaPlus	2016-12-01
		* ARC-Oleic 2	
		* ARC-Opal 1	
		* ARC-SelliePlus	2016-12-01
		Harts	1995-01-30
		* KANOSel	2013-01-01
		Kwarts	1995-01-30
			2010-01-31
		Mwenje	2010-01-31
		Nyanda* * SA Juweel	
		Tamnut OL 06	2008-01-31
			2016-12-01
A	Opto / Harris	Tula	2012-01-01
Avena sativa L	Oats / Hawer	Le Tucana	2004-09-01
		Maluti	
		Simonsberg	
		SSH 39 W	
		330 403	2016-12-01
		3311481	2000-06-01
		Towerberg	2013-03-14
Brassica napus L	Oil seed rape / Oliesaadraap	Valua 54	2001-12-01
Cenchrus ciliaris L	Blue buffalo grass /	Bergbuffel	2000-06-01
	Bloubuffelsgras	_	
Cucurbita maxima	Pumpkin & Squash /	Flat White Boer-Van	
Duchesne ex Lam.	Pampoen en Skorsie	Niekerk/ Plat Wit	1988-06-01
		Boer-Van Niekerk	
		* Sunproof	2003-03-01
Cucurbita pepo L	Squash / Skorsie	Blanco	2003-03-01
· ·	,	Rolet	1988-06-01
Daucus carota L	Carrot / Geelwortel	Brazilia	1991-12-01
Digitaria eriantha	Smuts finger grass /	Tip Top	1998-01-01
Steud.	Smutsvingergras		
Eragrostis curvula	Weeping lovegrass /	Agpal	2000-06-01
(Schrad.) Nees	Oulandsgras	Umgeni	1995-10-01
, ,			
Eragrostis tef.	Teff / Tefgras	* Emerald	2007-02-01
(Zucc.)Trotter		* Emerson	2007-02-01
		* Highveld	
		* lvory	2007-02-01
		* Rooiberg	
		* Witkop	2007-02-01
	L	**id(Op	2001-02-01

	Ī	Denomination of	Date of
Deteriori nome	Common nome		
Botanical name	Common name	variety/	commencement /
Botaniese naam	Gewone naam	Benaming van	Datum van
		variëteit	inwerkingtreding
Festuca arundinacea	Tall fescue /	* Boschhoek	2007-02-01
Schreb.	Langswenkgras	* Jenna	2007-02-01
		* Panalex	2007-02-01
		* Verdant	2007-02-01
Glycine max (L.)Merril.	Soybean / Sojaboon	* PAN 1867	2012-01-01
		* PAN 1454 R	2012-01-01
		* PAN 1664 R	2012-01-01
		* PAN 1666 R	2012-01-01
		* SSS 4945 (tuc)	2016-12-01
		* SSS 5052 (tuc)	2016-12-01
		* SSS 5449 (tuc)	2016-12-01
		* SSS 5755 (tuc)	2016-12-01
, , ,	D 1 /0	333 0300 (tuc)	2016-12-01
Hordeum vulgare L	Barley / Gars	Aguillas	2018-12-01
		Cocktail	2013-01-01
		* Elim	2018-12-01
		* Hessekwa	2018-12-01
		* Puma	2006-02-01
		* S5	2013-03-14
		* SabbiErica	2013-01-01
		* SabbiNemesia	2013-01-01
Lolium x hybridum	Hybrid ryegrass /	* Captivate	2007-02-01
Hausskn.	Basterraaigras	* Titan	2007-02-01
Lolium multiflorum	Italian and westerwold	* AgriBoost	2013-01-01
Lam.	Ryegrass / Italiaanse en	Agri-Hilton	2007-02-01
	Westerwold raaigras	Agriton	2000-06-01
	Trootorword radigrap	Burgundy	2007-02-01
		* Captain	2007-02-01
		Caversham	2007-02-01
		* Dairy Delight	2007-02-01
		Daily Delight Dargle	2007-02-01
			2007-02-01
		Lilliancei	
		Hutton	2007-02-01
		Naiiiiia	2013-01-01
		Midmar	1988-06-01
		Mispah	2007-02-01
		renonnei	2007-02-01
		* Sophia	2007-02-01
		* Springboard	2007-02-01
		* Springfield	2013-01-01
		* Sukari	2013-01-01
		* Supreme Q	2007-02-01
		* Sustainer	2013-01-01
		* Winter Gold	2007-02-01
Lupinus albus L.	White lupin / Witlupien	* Alida	2003-03-01
-		Esta	2003-03-01
		Vladimir	2003-03-01
Medicago sativa L.	Lucerne / Lusern	* S.A. Select	2004-09-01
Panicum maximum	White buffalo grass /	Puk P 8	2007-02-01
Jacq.	Witbuffelgras		
Phaseolus vulgaris L.	Dry bean / Droëboon	Bonus	1988-06-01
		* DBS 310	2006-02-01
		* DBS 360	2006-02-01
			-

Data-lank	Communication 1/2 - 1/2	Denomination of	Date of
Botanical name	Common name	variety/	commencement /
Botaniese naam	Gewone naam	Benaming van	Datum van
		variëteit	inwerkingtreding
Phaseolus vulgaris L.	Dry bean / Droëboon	Jenny	2008-01-31
		Kranskop	2008-01-31
		* Kranskop-HR 1	2008-01-31
		Majuba	1988-06-01
		Maskam	1988-06-01
		Mkuzi	1989-01-01
		* OPS-KW 1	2008-01-31
		OPS-RS 1	2008-01-31
		* OPS-RS 2	2008-01-31
		* OPS-RS 4	2008-01-31
		* PAN 116	2012-01-01
		* PAN 123	
			2012-01-01
		FAN 120	2012-01-01
		PAN 148	2012-01-01
		* PAN 9249	2012-01-01
		* RS 5	2008-01-31
		* Sederberg	2008-01-31
		Teebus	1988-06-01
		* Teebus RCR 2	2008-01-31
		* Teebus RR1	2008-01-31
Raphanus sativus L.	Fodder radish /	* Endurance	2018-12-01
raphanas sauvas E.	Voerradys	* Geisha	2007-02-01
	Vocitadys	* Lomo	2007-02-01
		* Samurai	2007-02-01
		Star 1000	2007-02-01
		Stat 1031	2007-02-01
		Steriing	2007-02-01
Secale cereale L.	Rye / Rog	* Blue Chip	2007-02-01
		* Echo	2007-02-01
		LS 35	2007-02-01
		LS 62	2007-02-01
		NCD Grazer	2007-02-01
		* PAN 263	2007-02-01
		* Southern Blue	2007-02-01
		* Southern Green	2007-02-01
		* Trojan	2007-02-01
		Wintergrazer 70	2012-01-01
		Trintergrazer re	2012 01 01
Solanum lycopersicum	Tomato / Tamatie	Rotam 4	1988-06-01
L. (= Lycopersicon	Tomato / Tamatic	Stevens	1988-06-01
esculentum)		Stevens	1988-00-01
	Crain carabum /	NS 5511	2009-01-31
Sorghum bicolor (L.)	Grain sorghum /	NS 5655	2009-01-31
Moench.	Graansorghum	NS 3033	2012-01-01
0	Demonstrate	* loffo	0007.00.04
Sorghum spp.	Perennial forage	Jalia	2007-02-01
	Sorghum / Meerjarige	Silk	1995-01-01
	Voersorghum		
Trifolium repens L	White clover / Witklawer	* AgriDan	2013-01-01
		* AgriMatt	2013-01-01
		Dusi	1988-03-01
Triticum aestivum L.	Wheat / Koring	* Baviaans	2004-09-01
		Betta DN	1999-01-01
		Caledon	2004-09-01
		* CRN 826	2004-09-01
		* Duzi	2004-09-01
		Duzi	2000-02-0 I

		Denomination of	Date of
Botanical name	Common name	variety/	commencement /
Botaniese naam	Gewone naam	Benaming van	Datum van
Botamooo maam	Jon on o maam	variëteit	inwerkingtreding
Triticum aestivum L.	Mhoot / Koring	* Elands	2004-09-01
Thicum aesilvum L.	Wheat / Koring		
		Gariep	1997-07-01
		Kariega	1998-01-01
		* Komati	2004-09-01
		* Koonap	2013-03-01
		* Krokodil	2006-02-01
		* Kwartel	2013-03-01
		Limpopo	1999-01-01
		Mac B	2004-09-01
		* Matlabas	2006-02-01
		* Olifants	2004-09-01
		* PAN 3118	2003-03-01
		* PAN 3120	2012-01-01
		* PAN 3355	2012-01-01
		* PAN 3368	2012-01-01
		* PAN 3379	2012-01-01
		* PAN 3408	2012-01-01
		* PAN 3471	2012-01-01
		* PAN 3478	
			2012-01-01
		Natel	2013-03-01
		Sable	2010-01-31
		Seriqu	2013-03-01
		331 00	2000-06-01
		SST 94	2000-06-01
		* SST 015	2004-09-01
		* SST 027	2004-09-01
		* SST 047	2009-01-31
		* SST 056	2009-01-31
		* SST 087	2010-01-31
		* SST 0147	2018-12-01
		* SST 0166	2018-12-01
		SST 322	2004-09-01
		* SST 347	2009-01-31
		* SST 356	2009-01-31
		SST 363	1999-11-01
		* SST 374	2010-01-31
		* SST 387	2010-01-31
		* SST 398	2013-03-01
		SST 399	2009-01-31
		* SST 806	2009-01-31
		SST 822	1999-11-01
		* SST 835	2004-09-01
		* SST 843	2013-03-01
		* SST 866	2013-03-01
		* SST 867	2010-01-31
		* SST 875	2010-01-31
		* SST 876	1999-11-01
		* SST 877	2010-01-31
		* SST 884	2013-03-01
		* SST 895	2013-03-01
		* SST 896	
			2013-03-01
		331 3149	2016-12-01
		331 0123	2016-12-01
		331 0133	2016-12-01
		331 0134	2018-12-01
		* SST 8155	2018-12-01

			Denomination of	Date of
Botanical name	Common name		variety/	commencement /
Botaniese naam	Gewone naam		Benaming van	Datum van
			variëteit	inwerkingtreding
Triticum aestivum L.	Wheat / Koring	*	Steenbras	2004-09-01
		*	Tankwa	2010-01-31
Triticum durum Desf.	Durum wheat / Durum	*	SSD 8113	2018-12-01
	koring	*	SSD 8124	2018-12-01
		*	SSD 8133	2018-12-01
		*	SSD 8143	2018-12-01
		*	SSD 8154	2018-12-01
x Triticosecale Witt.	Triticale / Korog,	*	AgBeacon	2012-01-01
ex A. Camus	Tritikale	*	AgBentley	2016-12-01
(Triticum x Secale)		*	AgMarcell	2018-12-01
			Cloc 1	1993-11-30
			Kiewiet	1997-07-01
			Rex	1997-07-01
		*	Snel	2016-12-01
		*	US 2007	2008-01-31
		*	US 2011	2016-12-01
		*	US 2014	2016-12-01
Vigna unguiculata (L.)	Cowpea / Akkerboon	*	Agri-Nawa	2007-02-01
Walp			Encore	2007-02-01
Zea mays L	Yellow maize / Geelmielie		Colorado	2003-03-01
Zea mays L	White maize / Witmielie	*	Afric 1	2004-09-01
		*	Border King NI/05	2007-02-01
			Mac Medium Pearl	1995-01-30
		*	Nelson's Choice	2004-09-01
			Nevada	2003-03-01
			ZM 521	2004-09-01
			ZM 1421	2008-01-31
			ZM 1423	2008-01-31
			ZM 1523	2008-01-31
			ZM 1623	2008-01-31
Zea mays L.	High Quality Protein		Obatanpa SR	2008-01-31
	White Maize / Hoë		QS-King	2009-01-31
	Proteïen Witmielie		Qsoba	2006-02-01

^{*} Plant breeders' rights granted/ Planttelersregte toegeken.

ECONOMIC DEVELOPMENT DEPARTMENT NOTICE 264 OF 2019

COMPETITION TRIBUNAL

NOTIFICATION OF COMPLAINT REFERRAL

The Competition Tribunal gives notice in terms of Section 51(3) & (4) of the Competition Act 89 of 1998 as amended, that it received the complaint referrals listed below. The complaint(s) alleges that the respondent(s) engaged in a prohibited practice in contravention of the Competition Act 89 of 1998.

Case No.	Complainant	Respondent	Date received	Sections of the Act
CR010Apr19	Competition Commission	K.F Computers CC; SAAB Grintek Defense (Pty) Ltd	15/04/2019	4(1)(b)(iii)
CR011Apr19	Competition Commission	Mix Telematics Africa (Pty) Ltd; Fleetco South Africa CC; Carrus Information Technologies (Pty) Ltd; Hyper Auto CC; Soltrack CC; Tectra Telematics (Pty) Ltd	15/04/2019	4(1)(b)(ii)
CR013Apr19	Competition Commission	Mpact Ltd; New Era Packaging (Pty) Ltd	15/04/2019	4(1)(b)(i), (ii) & (iii)
CR012Apr19	Competition Commission	Compania Sud Americana De Vapores S.A; Mitsui O.S.K Lines Ltd	16/04/2019	4(1)(b)(i), (ii) & (iii)

The Chairperson Competition Tribunal

ECONOMIC DEVELOPMENT DEPARTMENT NOTICE 265 OF 2019

COMPETITION TRIBUNAL NOTIFICATION OF DECISION TO APPROVE MERGER

The Competition Tribunal gives notice in terms of rules 34(b)(ii) and 35(5)(b)(ii) of the "Rules for the conduct of proceedings in the Competition Tribunal" as published in Government Gazette No. 22025 of 01 February 2001 that it approved the following mergers:

Case No.	Acquiring Firm	Target Firm	Date of Order	Decision
LM250Feb19	McCarthy (Pty) Ltd	The Motor Dealership t/a Vereeniging Auto Owned by Vereeniging Motors (Pty) Ltd	03/04/2019	Approved
LM251Feb19	2667980 Ontario Inc	AGT Food and Ingredients Inc	08/04/2019	Approved
LM261Feb19	Mercuria Energy Group Ltd	Aegean Marine Petroleum Network Inc	10/04/2019	Approved
LM264Mar19	Balwin Rental (Pty) Ltd	1056 Residential Units in The Greepark Developments	10/04/2019	Approved
LM271Mar19	The Industrial Development Corporation of South Africa	Celrose (Pty) Ltd	11/04/2019	Approved Subject to Conditions
LM267Mar19	K2012150042 South Africa (Pty) Ltd	Wanooka Properties (Pty) Ltd	24/04/2019	Approved

The Chairperson Competition Tribunal

SOUTH AFRICAN RESERVE BANK NOTICE 266 OF 2019

EXCHANGE CONTROL REGULATIONS REPLACEMENT OF NOTICE NO. 107 OF 2019 PUBLISHED ON 1 MARCH 2019

The Financial Surveillance Department of the South African Reserve Bank hereby gives notice, for general information, that notice number 107 of 2019 is null and void and will be replaced for the purpose of Exchange Control Regulations published under Government Notice No. R.1111 of 1 December 1961, as amended.

S E Mazibuko Head of Department

BOARD NOTICES • RAADSKENNISGEWINGS

BOARD NOTICE 74 OF 2019

FINANCIAL SECTOR CONDUCT AUTHORITY

FINANCIAL MARKETS ACT, 2012

AMENDMENTS TO THE ZAR X (PTY) LTD LISTINGS REQUIREMENTS

The Financial Sector Conduct Authority (FSCA) hereby gives notice under section 11(6)(d)(ii) of the Financial Markets Act, 19 of 2012 (Act No. 19 of 2012) that the amendments to the ZAR X (Pty) Ltd Listings Requirements have been published on the official website of the FSCA (www.fsca.co.za).

The effective date of these amendments is the same date of publication of this notice.

J A BOYD

FINANCIAL SECTOR CONDUCT AUTHORITY

BOARD NOTICE 75 OF 2019

THE SOUTH AFRICAN PHARMACY COUNCIL

RULES RELATING TO GOOD PHARMACY PRACTICE

The South African Pharmacy Council intends to publish amendments and additional minimum standards to be added to Annexure A of the *Rules relating to good pharmacy practice* which was published on 17 December 2004, Government Gazette No: 27112, Board Notice 129 of 2004, in terms of section 35A(b)(ii) of the Pharmacy Act, 53 of 1974.

Interested parties are invited to submit, within **60 days** of publication of this notice, substantiated comments on or representation regarding the amendments to the existing minimum standards and/or the additional minimum standards. Comments must be addressed to The Registrar, South African Pharmacy Council, Private Bag X40040, Arcadia, or fax (012) 326-1496 or email BN@sapc.za.org

SCHEDULE

Rules relating to what constitutes good pharmacy practice

- 1. In these rules "the Act" shall mean the Pharmacy Act, 53 of 1974, as amended, and any expression to which a meaning has been assigned in the Act shall bear such meaning.
- 2. The following rules to Annexure A of the *Rules relating to good pharmacy* practice are hereby amended
 - (a) Rule 1.2.4: Minimum standards for pharmacy premises, facilities and equipment Control of access to pharmacy premises;
 - (b) Rule 3.6: Minimum standards for locum tenens pharmacists and pharmacy support personnel; and
 - (c) Rule 4.2.3.3: Minimum standards for pharmacy administration and management Standard Operating Procedures.

Ag.

TA MASANGO REGISTRAR

1.2. MINIMUM STANDARDS OF PHARMACY PREMISES, FACILITIES AND EQUIPMENT

Rule 1.2.4 Control of access to pharmacy premises

Rule 1.2.4(a) which reads, "The responsible pharmacist of a pharmacy must ensure that every key, key card or other device, or the combination of any device, which allows access to a pharmacy when it is locked, is kept only on his/her person or the person of another pharmacist at all times",

be replaced with

"The Responsible Pharmacist of a pharmacy must ensure that every key, key card or other device, or the combination of any device, which allows access to a pharmacy when it is locked, is kept only on his/her person, the person of another pharmacist and/or the person of the owner/delegated person."

3.6 MINIMUM STANDARDS FOR LOCUM TENENS PHARMACISTS AND PHARMACY SUPPORT PERSONNEL

Rule 3.6: Minimum standards for locum tenens pharmacist and pharmacy support personnel is replaced as follows:

- (a) The qualifications and current registration status of locum tenens (locum) pharmacists and/or pharmacy support personnel (PSP) must be verified.
- (b) Locum pharmacists and PSP must have the necessary information to ensure the compliant operation of the pharmacy.
- (c) Operational information including Standard Operating Procedures (SoP), must be accessible to locum pharmacists and PSP. This information must include at least the following:
 - (i) computer instructions (as applicable);
 - (ii) names and contact details of key staff;
 - (iii) contact details of key medical practitioners;
 - (iv) instructions on use of alarm system (as applicable);
 - (v) emergency contact numbers; (include plumber, electrician, IT, etc.);
 - (vi) information pertaining to outstanding work;
 - (vii) opening and closing procedure of the pharmacy.
- (d) The responsible pharmacist must be able to demonstrate which registered persons were in the pharmacy at any particular time on any day in terms of the requirement for record keeping.

4.2 MINIMUM STANDARDS FOR PHARMACY ADMINISTRATION AND MANAGEMENT

The intent of this standard is to have the pharmacy organised in such a way that its services and processes contribute to the highest quality of pharmaceutical care. The pharmacy management plans the development and implementation of its goals and evaluates its effectiveness in achieving them.

Rule 4.2.3.3: Standard Operating Procedures is replaced as follows:

4.2.3.3 Standard Operating Procedures

A Standard Operating Procedure (SOP) is that set of instructions or steps which must be followed in order to complete a specific job or task safely, with no adverse impact on the environment, and in a way that maximises operational and production requirements. SOPs can be written for virtually any task undertaken in a pharmacy that has to be performed regularly and in a pre-determined way.

The responsible pharmacist is responsible for the existence of and adherence to SOPs in a pharmacy and must be involved in the compilation, regular review and dissemination of SOPs to all staff members.

SOP must-

- (a) provide personnel with all the safety, health, environmental and operational information necessary to perform a job properly;
- (b) ensure that operations are performed consistently to maintain quality control of processes and products;
- (c) ensure that processes continue uninterrupted and are completed timeously;
- (d) ensure that no failures occur that could harm anyone;
- (e) ensure that approved procedures are followed in compliance with legislation:
- (f) serve as a training document, e.g. pharmacist interns or pharmacist's assistants:
- (g) serve as a historical record of the how, why, when of steps in an existing process;
- (h) serve as an explanation of steps in a process so they can be reviewed in incident investigation.

The SOP must be reviewed annually and/or as required. SOPs are adapted to the operations of the specific pharmacy and staff is suitably trained on the SOPs.

4.2.3.3.1 Community pharmacy:

Premises

- (a) good housekeeping (cleaning procedures, etc. as well as pest elimination);
- (b) Access control keys, who can be in dispensary & stockrooms etc.

Services

- (a) SOP for professional services and procedures provided not included in the *Rules related to the services for which a pharmacist may levy a fee* in the pharmacy and clinic;
- (b) informed consent;
- (c) confidentiality;
- (d) infection control;
- (e) disposal of sharps & hazardous materials;
- (f) needle stick injury & blood spill procedures (where applicable).

Management

- (a) ADR & Quality reporting combined with handling of product complaints;
- (b) storage, retrieval and disposal of records and patient information;
- (c) receiving of medicines;
- (d) storage of medicine;
- (e) cold chain management;
- (f) handling of S6 medicines;
- (g) pre-packing and quality assurance procedures (where applicable);
- (h) collection and delivery of medicines;
- (i) effective stock rotation;
- (j) stock-taking;
- (k) disposal or removal of expired, damaged and/or contaminated stock as required;
- (I) recall of medicine;
- (m) Compounding of extemporaneous preparations, (where applicable);
- (n) preparation of TPN/large volume parenterals (including quality assurance procedures) (where applicable);
- (o) oncology mixing (including quality assurance procedures) (where applicable);
- (p) preparation of IV admixtures (including quality assurance procedures) (where applicable);
- (q) enquiry or complaint procedure;
- (r) staff training.

4.2.3.3.2 Institutional pharmacy:

Premises

- (a) good housekeeping (cleaning procedures, etc. as well as pest elimination);
- (b) Access control keys, who can be in dispensary & stockrooms, etc.

Services

- (a) SOP for professional services and procedures provided that are not included in the *Rules related to the services for which a pharmacist may levy a fee* in the pharmacy and clinic (where applicable);
- (b) informed consent (where applicable);
- (c) confidentiality;
- (d) infection control;
- (e) disposal of sharps & hazardous materials;
- (f) needle stick injury & blood spill procedures.

<u>Management</u>

- (a) ADR & Quality reporting combined with handling of product complaints;
- (b) storage, retrieval and disposal of records and patient information;
- (c) receiving of medicines;
- (d) storage of medicine;
- (e) cold chain management;

- (f) handling of S6 medicines;
- (g) pre-packing and quality assurance procedures) (where applicable);
- (h) effective stock rotation;
- (i) stock-taking;
- (j) disposal or removal of expired, damaged and/or contaminated stock as required;
- (k) recall of medicine;
- (I) Compounding of extemporaneous preparations, (where applicable);
- (m) enquiry or complaint procedure;
- (n) preparation of TPN/large volume parenterals (including quality assurance procedures) (where applicable);
- (o) oncology mixing (including quality assurance procedures) (where applicable);
- (p) preparation of IV admixtures (including quality assurance procedures) (where applicable);
- (q) control over medicine kept in hospital or health facility, e.g. wards, theatres, etc. (including controls over issuing ward stock and medicine per patient to the wards);
- (r) staff training.

4.2.3.3.3 Wholesale pharmacy:

Premises

- (a) good housekeeping (cleaning procedures, etc. as well as pest elimination);
- (b) Access control.

Management

- (a) handling of product complaints;
- (b) procurement of medicine;
- (c) receiving of medicines;
- (d) storage of medicine;
- (e) cold chain management (including procedures to be followed in the event of a refrigerator power failure):
- (f) handling of Specified S5 and S6 medicines;
- (g) pre-packing and quality assurance procedures (where applicable);
- (h) delivery of medicines;
- (i) effective stock rotation;
- (j) stock-taking;
- (k) disposal or removal of expired, damaged and/or contaminated stock as required in regulation 44 published in terms of the Medicines Act:
- (I) recall of medicine;
- (m) verification that the person/organisation to whom medicines are supplied, are duly registered to be supplied with medicines;
- (n) handling of section 21 medicines.

4.2.3.3.4 Consultant pharmacy:

(a) good housekeeping (cleaning procedures and pest elimination);

- (b) SOP for professional services and procedures provided not included in the rules related to the services for which a pharmacist may levy a fee in the pharmacy and clinic (where applicable);
- (c) storage, retrieval and disposal of records and patient information;
- (d) Enquiry or complaint procedure.

4.2.3.3.4 Primary health facility:

Premises

- (a) good housekeeping (cleaning procedures, etc. as well as pest elimination:
- (b) Access control keys, who can be in dispensary & stockrooms, etc.

<u>Services</u>

- (a) SOP for professional services and procedures provided in the dispensary;
- (b) informed consent;
- (c) confidentiality and record keeping.

Management

- (a) ADR & Quality reporting combined with handling of product complaints;
- (b) storage, retrieval and disposal of records and patient information
- (c) procurement of medicine;
- (d) receiving of medicines;
- (e) storage of medicine;
- (f) cold chain management;
- (g) handling of S6 medicines (where applicable);
- (h) effective stock rotation;
- (i) stock-taking;
- (j) disposal or removal of expired, damaged and/or contaminated stock;
- (k) recall of medicine;
- (I) enquiry or complaint procedure;
- (m) control over medicine kept in places other than the dispensary.

The following policies must be available in all pharmacies:

- (a) Hygiene or infection control policy;
- (b) Occupational health and safety policy.

Printed by and obtainable from the Government Printer, Bosman Street, Private Bag X85, Pretoria, 0001 Contact Centre Tel: 012-748 6200. eMail: info.egazette@gpw.gov.za Publications: Tel: (012) 748 6053, 748 6061, 748 6065